

Technical Design Document

Blockout Shooter

William John Lautama

1

Table of Contents
Table of Contents 1

Project Overview 4

Game Mechanics Overview 4

Target Platform 4

Game Mechanics 6

UML Diagram 6

Movement Mechanics 8

Controls 9

Additional Gameplay Mechanic 1 - Wall Run 11

Mechanic Overview 11

Mechanic Description / Functionality 12

Sequence Diagram 14

Additional Gameplay Mechanic 2 - Poison Trail 14

Mechanic Overview 14

Mechanic Description / Functionality 16

Sequence Diagram 18

Multiplayer 18

Game State & Player State 18

Game State 18

Player State 18

Class Replication 18

Remote Procedure Calls 21

Physics Constraint 1 - Balloon 28

Overview of Interaction 28

Interaction Description 28

How the Interaction Works 28

Inspiration / Reference Images 29

In-Engine Screenshots 31

Properties and Values 33

Diagram of Interaction 34

Physics Constraint 2 - Chaos Mace 35

Overview of Interaction 35

Interaction Description 35

How the Interaction Works 35

Inspiration / Reference Images 36

In-Engine Screenshots 38

Properties and Values 40

Diagram of Interaction 42

Advanced Niagara Particle Effect 43

Niagara Particle Effect - Hit 43

Overview of Effect 43

Effect Description 43

2

Inspiration / Reference Images: 44

In-Engine Screenshots: 46

Properties and Values 47

Floating_Numbers Emitter 47

Blood Emitter 50

Blood0001 Emitter 53

Blood0002 Emitter 55

Blood0003 Emitter 59

Blood0004 Emitter 62

Niagara System / Emitters Breakdown 65

Custom Materials 65

Custom Material 1 - M_Blood 65

Custom Material 2- M_Blood_Opacity 66

Emitters 66

Emitter 1- Floating_Numbers Emitter 66

Emitter 2 - Blood Emitter 67

Emitter 3 - Blood0001 Emitter 67

Emitter 4 - Blood0002 Emitter 67

Emitter 5 - Blood0003 Emitter 68

Emitter 6 - Blood0004 Emitter 68

C++ Parameters Breakdown 68

Destruction Aware Niagara Particle Effect 71

Niagara Particle Effect - Lightning 71

Overview of Effect 71

Effect Description 71

Inspiration / Reference Images: 71

In-Engine Screenshots: 72

Properties and Values 75

Source Emitter 75

Lightning Emitter 77

Collision Enabled Niagara Particle Effect 80

Niagara Particle Effect -Tentacles 80

Overview of Effect 80

Effect Description 80

Inspiration / Reference Images: 81

In-Engine Screenshots: 82

Properties and Values 86

Custom Materials 86

M_Tentacles 86

M_Radial 87

M_Reaction 88

Emitters 91

Tentacles Emitter 91

Colorful_Dots 94

3

Particle_Dots 96

C++ Interaction Description 99

Custom Geometry Collection 100

Overview of Effect 100

In-Engine Screenshots 101

Shader Effects 102

Shader Effect 1 - Stylized Water Shader 102

Overview of Effect 102

Effect Description 103

Inspiration / Reference Images: 103

In-Engine Screenshots: 104

Properties and Values 106

Node Graph 107

Shader Effect 2 - Glitcher 109

Overview of Effect 109

Effect Description 110

Inspiration / Reference Images: 110

In-Engine Screenshots: 111

Properties and Values 112

Node Graph 113

Post Processing Effects 115

Local Post Processing Effect - Underwater 115

Overview of Effect 115

Effect Description 115

Inspiration / Reference Images: 116

In-Engine Screenshots: 117

Properties and Values 118

Node Graph 118

Global Post Processing Effect - Outline 121

Overview of Effect 121

Effect Description 121

Inspiration / Reference Images: 122

In-Engine Screenshots: 123

Properties and Values 124

Node Graph 125

Optimisation 130

Statistics Auditor Report 130

GPU Profiler Report 131

Unreal Insights Report 133

Timing Sections Report 134

Timings Section 1 134

Timings Section 2 135

4

Project Overview
Third Person Multiplayer Parkour Arena. That is what this game is all about. But its not

just a regular third person game, it utilised parkour, fast traversal while also

encouraging combat with items and unique weapons. Having the theme of the Glitch,

the game has unique mechanics that capitalise on the theme such as the Chaos Mace.

The game also focuses on a wall running mechanic combined to encourage high

speed traversal in a parkour arena. There are also items that are present within the

levels that the player can take advantage of. One of the main items are the poison trail

that is in the form of a box that the player can take and a poison trail will appear behind

the player that inflicts poison damage when it is hit. The aim is to implement this core

mechanic efficiently and make it engaging for the player. The game is being developed

for PC as it allows for smoother execution of the wall running mechanic with the

keyboard, and the third person format is easier to control with a keyboard and mouse

compared to consoles. This aims to provide a comfortable gaming experience for

players.

Game Mechanics Overview
There are 2 main mechanics. One of the mechanics is the wall run mechanic. Wall run

mechanics are very common in typical movement video games as a mechanic but

usually, the format of the game is not in the form of a party game. By combining fast

paced movement and shooting in a third person format, it creates an engaging and

enticing experience of a mixture of movement and shooting.

Another thing that is within the game are items, specifically the poison trail item. This

creates a variety of challenges to the players by making the player that has gotten the

poison trail item an advantage of movement by limiting the other player’s movement in

the arena. There are advantages and disadvantages of the mechanic but overall, it

creates an exciting way to approach the arena with the available movements.

By combining the fast paced wall run movement and the items that are available in the

game, it creates unlimited possibilities of gameplay and interactions between players.

Target Platform
The platform that I am making this game for is PC. This is due to the fact that with pc,

and the keyboard that are attached, the wall running mechanic can run smoother

since it is very focused on pressing multiple keys on the keyboard at the same time.

While this effect can be achieved in other consoles, it is harder to do so, especially on

handheld and consoles that rely on the analog stick for movement.

Even though a third person format game is generally easier to control in console, the

genre of action shooters are generally easier to control on PC. This is due to the aiming

factor of the game being shooting and movement based therefore, by using both

5

keyboard and mouse, more control of the game can be achieved. The item factor itself

doesn’t really affect the game’s platform release but if the players are using PC to use

the items, by providing extra control, the items can be more easily taken and utilised by

them.

6

Game Mechanics

UML Diagram
The arrows are the representation of the relationship between the classes. This means,

the class triggers or relates directly in activating the other class that it is pointing to.

7

8

Movement Mechanics
This game has fairly simple movement mechanics. The basic movement (walking) is

executed through W, A, S, and D. With W moving forward, A moving to the left, S moving

backwards, and D moving to the right. The basic movement’s max speed is 500. The

game also allows the player to sprint. When the player sprints, the player’s max speed is

9

increased from 500 to 4000 making the movement experience way faster than regular

walking.

The game also allows the player to jump with a custom jump that is based on the

player’s position. The jump’s height is calculated from an FVector value that are

(ActorForwardVector for X, ActorForwardVector for Y, and JumpLength which is 1.5. This

is then stored to a variable called JumpBoost. The JumpBoost variable then converted

into GetSafeNormal and multiplied by 1000. Then, using the LaunchCharacter function,

the JumpBoost is used. When the player is wall running, instead of getting the actor

forward vector, the actor’s right vector based on which side the player is wallrunning is

returned. The jump function is also affected with the wall running since the player will

jump opposite of where the player is wall running. For example, if the wall is on the right

of the player and the player is wall running, the player will jump to the left and vice

versa. There is also a jump count that starts with 2 that resets every time the player wall

runs. The jump count also resets after the player stops being in mid air.

The collision of the player is based on the capsule component that is attached to it. The

capsule component will collide with the walls that are in the environment to prevent the

player from going through the walls. When the player is wall running, the player’s overall

setup is also changed which will be described in more detail in the additional

gameplay mechanics overview.

Controls

Mapping Action Description Keybind Modifiers

LookMapping

Look Around

Used to move

the character’s

camera based

on the mouse

cursor

Mouse

Movements

Modify

ControllerYaw

and

ControllerPitch

input

WalkingMapping
Move

Forward

Used to move

the character

forward

W

SwizzleAxisValue

WalkingMapping

Move

Backwards

Used to move

the character

backwards

S

SwizzleAxisValue,

Negate

10

WalkingMapping

Move to the

Right

Used to move

the character

to the right

D

Change

ActorRightVector

WalkingMapping

Move to the

Left

Used to move

the character

to the right

A

Change

ActorRightVector,

Negative

JumpMapping

Jump

Used to make

the player

jumps

depends on

which state the

player is in

(Wall Running

or Normal)

Space Bar

SprintMapping

Sprint

Used to make

the player walk

faster (sprint)

Shift

FireMapping

Shoot
Used to shoot

projectiles

Left Mouse

Button

BalloonMapping

Attach

Balloon

Used to Spawn

Balloon and

Attach it to the

Object that the

Player was

Looking At

B

GrappleMapping

Attach

Grapple

Used to Attach

Grapple Into

Object that the

Player was

Looking At

Right Mouse

Button

PullMapping

Chaos

Grapple

Used to Pull

Grapple to

Cause Chaos

Attack

Q

11

SceneChangeM

apping

Outline Post

Processing

Activation

Used to

activate /

deactivate

outline post

processing

E

Additional Gameplay Mechanic 1 - Wall Run

Mechanic Overview

The mechanic that I included as an additional mechanic is the wall run mechanic. The

way the wall run mechanic works is that it checks if the player is falling or not using a

built in character movement function called IsFalling.

Then if the player is in the middle of falling or in the air, it checks if there is a wall on the

side of the player. If there is no wall, nothing happens but if there is a wall, the player

wall runs. The player wall runs in a horizontal direction of the wall until there are no

more walls or until the player moves away from the wall.

12

Mechanic Description / Functionality

If the player is in the middle of falling or is in the air, it checks if there is a wall on the side

of the player using a function called StartWallRun using raycast. The function

StartWallRun then calls another function that is a Server RPC called ServerStartWallRun

which runs on the server to prevent the player from modifying the movement code.

Inside the ServerStartWallRun function, it casts a raycast that starts at the actor’s

location and ends on the right vector of the actor that is multiplied by 50 which is

basically just the side of the player’s character. The raycasts are executed based on

where the wall is positioned from the player whether its left or right of the player.

If the raycasts hits, it adds a jump count to allow the player to jump, adds a boolean

value to the bOnRight value based on where the wall is to the player, if it is on the right

of the player then it is true, if it is left to the player then it is false. This is to make the

jump functionality feel better based on which wall it is so it can propel the player

opposite of the wall. Then, the bIsJumpOffWall is checked if it is false or not. If it is false,

then it changes the variables. This is done to make sure that the player is not in the

middle of jumping off a wall when it is trying to detect the wall.

Other than the ray cast, the player has a wall run capsule that overlaps with the wall to

check more accurately. This can make the wall run more accurately and fluidly.

Then, the velocity is changed into the player’s forward vector times by 2000 for the x

and y, the gravity scale is changed to 0.4f, the plane constraint normal is set to 1 on the

Z value but 0 on the X and Y, and the air control is set to 1.0f. The velocity is very large

compared to the regular player velocity due to the fact that when the player is wall

13

running, I want it to be faster than a regular walk which needs proper speed. The gravity

scale is also lower because when the player wall runs, I want the player to not drop to

the ground as fast as jumping. The air control 1 so the player can have full control of the

player when wall running since it counts as being in the air. After that, if the player is

touching the wall, the player will proceed to wall run with a determined velocity. The

wall run is horizontal along the walls. If the player finishes wall running or if the player

goes off the wall, the values that are adjusted goes back to the default values that were

set from the beginning of the gameplay with a function called OffWall() that is a Server

RPC.

In summary here is how the specific values work in the form of a diagram :

Variable Value Description

Raycast Start = Actor’s Location

End = Actor’s Location * 50

Used to check for a wall on

the side of the player

bOnRight True / false depending on

player’s location to the

wall

Used as a check variable

for the position of the wall

bIsJumpOffWall True / false depending if

the player is on the wall or

not

Used to make sure that the

player is not in the middle

of jumping off a wall when

it is trying to detect the

wall.

Velocity Player’s forward vector *

2000 (x, y),

Used to increase the

player’s speed when the

player is wall running

Gravity Scale Dynamic (1 when not wall

running, 0.4 when wall

running)

Used to simulate wall

running with low gravity

Plane Constraint Normal Dynamic (1 on the z value

when wall running, 0 on

the z value when not wall

running)

Used to constraint the

player when the player is

wall running on the z axis.

Air Control 1.0f Set to make the player

have full control while on

14

air

Sequence Diagram

Additional Gameplay Mechanic 2 - Poison Trail

Mechanic Overview

Another additional mechanic that I implemented is the poison trail. The poison trail

(also called Collider Trail) is a powerup that the player can use. How the power up

works basically is it starts as a spinning cube that spawns on the world. When the

player takes it, the player will spawn a trail of poison with a looping timer of 0.01 for a

couple of seconds that will be mentioned in the next section with justification. The trail

will also disappear after a couple of seconds. When the player or the enemy hits the

trail, it inflicts poison damage overtime for a couple of seconds. This creates a good

opportunity but also encourages careful traversal through the environment.

15

16

Mechanic Description / Functionality

In this section, the details of the mechanic description of functionality will be discussed.

There are 3 main classes that are being interacted with in this mechanic which are the

player character class, trail collider class, and the trail power up box class.

The trail power up box class has a box mesh that can be overlapped. It also rotates with

a looping timer every 0.01 seconds by 1 in the yaw. When collided, it casts the OtherActor

into the player character class. Then, it checks if the cast is successful by checking if it's

null or not. If it is not null, it changes the boolean variable called bHasTrailPowerUp into

true and calls the function called StartTimerTrail(). It also destroys itself. This is done so

that it gives an effect of the player taking the item. All of this is also replicated since the

game is online multiplayer.

After it is collided it calls a looping timer called TrailSpawnHandle , it calls the

SpawnTrailCollider() function every 0.01 seconds. Then, it calls the

MulticastSpawnTrailCollider() function since meshes don’t replicate so it needs to be

called through the client and the server. In the MulticastSpawnTrailCollider, it gets the

actor location, then it subtracts it with the actor forward vector times by 150 that is

stored in an FVector variable called SpawnLocation. This makes sure it spawns behind

the player character rather than on the player character. Then, it spawns the trail

collider based on the SpawnLocation that was initialised earlier.

It was also mentioned that the StartTimerTrail() function was called when the player

collided with the power up box. Basically what the function does it calls a server rpc

called ServerStartTimerTrail(). Then, basically it starts a timer for 3 seconds that calls

the function StopTrail() when it ends. In the StopTrail() function, it calls a Server RPC

called ServerStopTrail() that makes the boolean variable bHasTrailPowerUp to false and

also pauses the TrailSpawnHandle timer to stop the spawning of the Trail Collider.

How the trail collider works is pretty simple. The trail collider has a static mesh called

TrailCollideMesh and an FTimerHandle DestrucitonTimerHandle. The collision is also

enabled for overlapping with the mesh and then, it uses the same technique as the

power up box, when it collides with any player, it casts the player that it collided with

and then it checks if it is getting casted correctly. Then, it also checks if the character is

already poisoned or not. If it is not poisoned already, set the boolean variable

17

bIsPoisoned to true and then call the function in the player character called

StartTimerPoison(). Then, the last thing is it destroys itself with Destroy().

The StartTimerPoison calls a server RPC called ServerStartTimerPoison and then it loops

every 1 seconds and calls the PoisonPlayer() function. It calls a server RPC when

poisoning the player, and it also deals 5 damage each time the player is poisoned

using the DealDamage function that was provided in the labs. Each time the player is

damaged, a float variable called PoisonTracker gets decreased by 1 each time. This

happens five times since the starting number for the variable is 5. Then it checks if the

PoisonTracker is less than 0, it pauses the timer so it doesn’t loop again and sets

bIsPoisoned to false to make it so that the player is not set as being poisoned currently.

Variable Value Description

Looping Rotate Timer 0.01 Seconds Looping Used to rotate the Trail

Collider Power Up Box

bHasTrailPowerUp True / false depending on

if the player has the power

up or not

Used to check if the player

has a power up or not

PoisonTracker Starts as 5 Used to track the poison

damage to the player

18

Sequence Diagram

Multiplayer

Game State & Player State

Game State

Property / Function Description

FString GetPlayerName(APlayerState*
PlayeState)

It gets the player’s names in the game which are Bob
and Billy. This is done to replicate the names of each
player throughout the game. The use of this can be for
displaying high scores with the names of each player.

Player State

Property / Function Description

GetPlayerDevice(AController* C) Retrieves the player’s device name. This makes it so
that when the players need info on their PC name,
they can get it. It is also useful for developers to
identify potential cheaters in games. This is done to
keep all of the player’s device name replicated
throughout the servers.

Class Replication

19

Class Name Property Name Description

A01_BlockoutShoot
erCharacter

int JumpCount This keeps track of the JumpCount of the
game. This replicates it throughout the
game to make sure that the amount of
Jumping possible is consistent.

FVector JumpBoost This variable represents the amount of
JumpBoost that the player is going to
receive every time the player jumps. It
needs to be replicated to ensure that the
jumps are consistent throughout all of the
players.

Float JumpLength This variable represents the length of the
jump of each player. As mentioned before,
the variable needs to be consistent in order
for the player’s jumps to be consistent for
all players.

Float TextOffset This variable represents the text offset that
is changed dynamically when the damage
text appears on the particles. This is
replicated to ensure that the offset of the
floating text appears the same for all
players.

UCableComponent*
GrappleRope

This variable represents the cable
component used for the grapple physics
constraint mechanic. This is replicated to
ensure that the grapple mechanic is
working perfectly and in sync with all
players.

UPhysicsConstraintCompo
nent* PhysicsConstraint

This variable represents the physics
constraint on the player. This is used to
connect the grappling rope cable
component to a designated object. This is
replicated to make sure that all players are
in sync when using the physics constraint
and making sure it works properly and
consistently.

Float PoisonTracker This variable represents the amount of
times the player is poisoned overtime. This
needs to be replicated to make sure that all
players are poisoned in an equal and
consistent manner.

Bool bIsGrappled This variable represents if the player
already grappled or not. This needs to be
replicated to make sure that all players'
ability to grapple and activate the chaos
physics constraint mechanic to be

20

 consistent throughout the game.

AttackCube UStaticMeshComponent*
Box

This variable represents the mesh of the
attack cube. The variable itself needs to be
replicated to make sure that the mesh is in
sync with all of the players.

Balloon UStaticMeshComponent*
Balloon

This variable represents the mesh of the
Balloon. The variable itself needs to be
replicated to make sure that the balloon
mesh stays in sync with all of the players
appearance wise.

UPhysicsConstraintCompo
nent* PhysicsConstraint

This variable represents the physics
constraint on the player. This is used to
connect the balloon cable component
(Rope) to a designated object. This is
replicated to make sure that all players are
in sync when using the physics constraint
and making sure it works properly and
consistently.

UCableComponent* Rope This variable represents the cable
component used for the balloon mechanic.
This is replicated to ensure that the balloon
mechanic is working perfectly and in sync
with all players.

Floor UStaticMeshComponent*
FloorMesh

This variable represents the mesh of the
FloorMesh. The variable itself needs to be
replicated to make sure that the Floor mesh
stays in sync with all of the players
appearance wise.

GlitchObject UStaticMeshComponent*
Object

This variable represents the mesh of the
Object. The variable itself needs to be
replicated to make sure that the
GtlichObject mesh stays in sync with all of
the players appearance wise.

TrailCollider UStaticMeshComponent*
TrailColliderMesh

This variable represents the mesh of the
TrailCollider. The variable itself needs to be
replicated to make sure that the
TrailCollider mesh stays in sync with all of
the players appearance wise.

USphereComponent*
Hitbox

This variable represents the hitbox of the
TrailCollider. This needs to be replicated to
make sure the collision between the player
and the trail collider stays in sync between
all players in the game.

TrailPowerUpBox USphereComponent*
Hitbox

This variable represents the hitbox of the
TrailPowerUp Box. This needs to be
replicated to make sure the collision

21

 between the player and the Trail Power Up
box stays in sync between all players in the
game.

UStaticMeshComponent*
TrailPowerUpBoxMesh

This variable represents the mesh of the
TrailPowerUpBox. The variable itself needs
to be replicated to make sure that the Trail
Power Up mesh stays in sync with all of the
players appearance wise.

Wall UStaticMeshComponent*
WallMesh

This variable represents the mesh of the
Wall. The variable itself needs to be
replicated to make sure that the Wall mesh
stays in sync with all of the players
appearance wise.

Water UStaticMeshComponent*
WaterPlaneMesh

This variable represents the mesh of the
Water Plane. The variable itself needs to be
replicated to make sure that the Water
Plane mesh stays in sync with all of the
players appearance wise.

Remote Procedure Calls
Discuss each class that has remote procedure calls implemented, outline their type and a

description for their purpose.

Class Name Function Type Description

A01_BlockoutSho
oter

ServerPoisonPlayer() Server This RPC is invoked on the server
because the functionality is quite
important. To prevent the player
from adjusting how the players are
poisoned and the values of the
poison damage, it needs to be
called from the server.

ServerStartWallRun() Server This RPC is invoked on the server
because I don’t want the player to
be able to tinker with the code when
the player is wall running. If it is not
on the server, the player is able to
adjust the speed, the way it works,
etc which is not something that I
want therefore it needs to be called
from the server, it also needs to be
consistent for all of the players that
are present on the server.

OffWall() Server This RPC is invoked on the server
because I don’t want the player to
be able to tinker with the code when

22

 the player is getting off the wall. If it
is not on the server, the player is
able to adjust the speed, the way it
works, etc which is not something
that I want therefore it needs to be
called from the server, it also needs
to be consistent for all of the players
that are present on the server.

ServerCallJump() Server This RPC is invoked on the server
because I don’t want the player to
be able to edit the jump values itself
like height, jump boost, etc therefore
it needs to be called from the server,
it also needs to be consistent for all
of the players that are present on
the server.

ServerResetSprint() Server This RPC is invoked on the server to
prevent the player from editing the
values of the reset sprint function
since the value of the player max
walk speed is present. The sprint
also needs to be consistent
throughout the game itself therefore
it needs to be called from the server.

ServerMaxSprint() Server This RPC is invoked on the server to
prevent the player from editing the
values of the max sprint function
since the value of the max walk
speed just like the reset sprint
function are present in the RPC. It
also needs to be consistent
throughout the game itself therefore
it needs to be called from the server.

ServerStartTimerTrail() Server This RPC is invoked on the server to
prevent the player from adjusting
with the timer of the collider trail
spawning. This is crucial since it can
affect the power of the item and also
it needs to be consistent throughout
the game so it needs to be called
from the server.

ServerStartSpawnTrail
()

Server This RPC is invoked on the server to
prevent the player from adjusting
with the timer of the collider trail
spawning. This is crucial since it can
affect the power of the item and also
it needs to be consistent throughout
the game so it needs to be called
from the server.

23

 ServerStopTrail() Server This RPC is invoked on the server to
prevent the player from adjusting
with the values of when the player
stops trailing the poison trail
mechanic. This also needs to be
consistent throughout the server
whether it is still trailing or not
therefore it needs to be called from
the server.

ServerStartTimerPoiso
n()

Server This RPC is invoked on the server to
prevent the player from adjusting
with the timer of the collider trail
spawning. This is crucial since it can
affect the poison effect and also it
needs to be consistent throughout
the game so it needs to be called
from the server.

ServerSpawnBalloon() Server This RPC is invoked on the server to
prevent the player from adjusting the
spawn rate of the balloon and the
balloon spawning overall. This is
crucial since I don’t want the player
to cheat and spawn as many
balloons as they want through a
single button press. It also needs to
be consistent throughout the game
therefore it needs to be called from
the server.

ServerStartGrapple() Server This RPC is invoked on the server to
prevent the player from adjusting the
values of when the player starts
grappling and also where the player
can grapple. It also needs to be
consistent throughout the game
therefore it needs to be called from
the server.

ServerStartPull() Server This RPC is invoked on the server to
prevent the player from adjusting the
strength of the pull when the player
is pulling and activating the chaos
grapple mechanic. It also needs to
be consistent throughout the game
therefore it needs to be called from
the server.

ServerStopPull() Server This RPC is invoked on the server to
prevent the player from adjusting the
strength of the pull when the player
stops pulling and deactivating the
chaos grapple mechanic. It also

24

 needs to be consistent throughout
the game therefore it needs to be
called from the server.

ServerDisableInvulner
ability

Server This RPC is invoked on the server to
prevent the player from adjusting the
invulnerability of when it is disabled.
It also needs to be consistent
throughout the game therefore it
needs to be called from the server.

MulticastSpawnTrailC
ollider()

NetMulticast This RPC is invoked on both the
server and the client using
NetMulticast. This is due to the fact
that the meshes don't get replicated
properly therefore it needs to be
spawned within both client and
server. It is also worth mentioning
that this focuses on the visual
aspect of the game, not the crucial
component.

MulticastSpawnHitPart
icles(int
DamageAmount,
FVector HitLocation)

NetMulticast This RPC is invoked on both the
server and the client using
NetMulticast. This is due to the fact
that the particles don't get replicated
properly therefore it needs to be
spawned within both client and
server. It is also worth mentioning
that this focuses on the visual
aspect of the game, not the crucial
component.

MulticastReactWall(co
nst
TArray<FBasicParticle
Data>& Data)

NetMulticast This RPC is invoked on both the
server and the client using
NetMulticast. This is due to the fact
that the materials don't get
replicated properly therefore it
needs to be called on both the
server and the client so all of the
players can see the material change
and react. It is also worth
mentioning that this focuses on the
visual aspect of the game, not the
crucial component.

MulticastStartPull() NetMulticast This RPC is invoked on both the
server and the client using
NetMulticast. This is due to the fact
that the physics constraint cannot be
replicated only through the server
but needs to be replicated through
the client and server. It is also worth
mentioning that this focuses on

25

 some of the functionality of the
game but it is not crucial if the player
is able to tinker with the code since
it just activates the interaction of the
objects that are already called on
the server.

MulticastStopPull() NetMulticast This RPC is invoked on both the
server and the client using
NetMulticast. This is due to the fact
that the physics constraint cannot be
replicated only through the server
but needs to be replicated through
the client and server. It is also worth
mentioning that this focuses on
some of the functionality of the
game but it is not crucial if the player
is able to tinker with the code since
it just activates the interaction of the
objects that are already called on
the server.

MulticastAttachCompo
nent(UPrimitiveCompo
nent* Component,
FVector Location,
FName BoneName)

NetMulticast This RPC is invoked on both the
server and the client using
NetMulticast. This is due to the fact
that the physics constraint cannot be
replicated only through the server
but needs to be replicated through
the client and server. It is also worth
mentioning that this focuses on
some of the functionality of the
game but it is not crucial if the player
is able to tinker with the code since
it just activates the attachment of the
objects.

MulticastDetachComp
onent

NetMulticast This RPC is invoked on both the
server and the client using
NetMulticast. This is due to the fact
that the physics constraint cannot be
replicated only through the server
but needs to be replicated through
the client and server. It is also worth
mentioning that this focuses on
some of the functionality of the
game but it is not crucial if the player
is able to tinker with the code since
it just activates the attachment of the
objects.

MulticastSpawnTentac
les()

NetMulticast This RPC is invoked on both the
server and the client using
NetMulticast. This is due to the fact
that the particles don't get replicated

26

 properly therefore it needs to be
spawned within both client and
server. It is also worth mentioning
that this focuses on the visual
aspect of the game, not the crucial
component.

UpdateMaterials(UMat
erialInterface*
NewMaterial)

NetMulticast This RPC is invoked on both the
server and the client using
NetMulticast. This is due to the fact
that the materials don't get
replicated properly therefore it
needs to be spawned within both
client and server. It is also worth
mentioning that this focuses on the
visual aspect of the game, not the
crucial component.

ClientActivateSceneC
hange()

Client This RPC is invoked on the Client
since it is only the visual aspect
that's changing and it should
happen locally so each player has
total control over it.

AttackCube HurtPlayer(UPrimitive
Component*
HitComponent,
AActor* OtherActor,
UPrimitiveComponent*
OtherComp, FVector
NormalImpulse, const
FHitResult& Hit)

Server This RPC is invoked on the server
since it is a crucial part of the game.
It hurts the player and I don’t want it
so that the player can tinker with the
code and adjust the damage as they
want it to be. It also needs to be
consistent throughout the game
therefore it needs to be called from
the server.

Balloon MulticastAttachCompo
nent(UPrimitiveCompo
nent* Component,
FVector Location,
FName BoneName)

NetMulticast This RPC is invoked on both the
server and the client using
NetMulticast. This is due to the fact
that the physics constraint cannot be
replicated only through the server
but needs to be replicated through
the client and server. It is also worth
mentioning that this focuses on
some of the functionality of the
game but it is not crucial if the player
is able to tinker with the code since
it just activates the attachment of the
objects.

GlitchObject HurtPlayer(UPrimitive
Component*
HitComponent,
AActor* OtherActor,
UPrimitiveComponent*
OtherComp, FVector

Server This RPC is invoked on the server
since it is a crucial part of the game.
It hurts the player and I don’t want it
so that the player can tinker with the
code and adjust the damage as they
want it to be. It also needs to be

27

 NormalImpulse, const
FHitResult& Hit)

 consistent throughout the game
therefore it needs to be called from
the server.

UpdateMaterials() NetMulticast This RPC is invoked on both the
server and the client using
NetMulticast. This is due to the fact
that the materials don't get
replicated properly therefore it
needs to be spawned within both
client and server. It is also worth
mentioning that this focuses on the
visual aspect of the game, not the
crucial component.

ResetMaterials() NetMulticast This RPC is invoked on both the
server and the client using
NetMulticast. This is due to the fact
that the materials don't get
replicated properly therefore it
needs to be spawned within both
client and server. It is also worth
mentioning that this focuses on the
visual aspect of the game, not the
crucial component.

Water MulticastUpdateMateri
als()

NetMulticast This RPC is invoked on both the
server and the client using
NetMulticast. This is due to the fact
that the materials don't get
replicated properly therefore it
needs to be spawned within both
client and server. It is also worth
mentioning that this focuses on the
visual aspect of the game, not the
crucial component.

MulticastResetMaterial
s()

NetMulticast This RPC is invoked on both the
server and the client using
NetMulticast. This is due to the fact
that the materials don't get
replicated properly therefore it
needs to be spawned within both
client and server. It is also worth
mentioning that this focuses on the
visual aspect of the game, not the
crucial component.

Physics Constraint 1 - Balloon

28

Overview of Interaction
The first physics constraint interaction that I have within the game is the Balloon. The

balloon attaches to the Attack Cubes that are present within the world and brings them

up. After that, it also disappears overtime, releasing the Attack Cubes to the ground

after 10 seconds. This creates an opportunity for the player to make a makeshift trap to

the enemies by making it fall from above and hitting the player. Since the Attack Cube

will have a specific amount of velocity, it will damage the player. This will add a sense of

unpredictability of the level as the player attacks each other. By making it a trap, the

players will need to pay more attention to the level, especially above since balloons

that have been setup can just fall anytime. With a mixture of movement and items, this

can create more chaos into the gameplay and improve the immersion and fun aspect

of the game itself.

Interaction Description

How the Interaction Works

Overall, the way the interaction works is very simple. It uses a separate class called

Balloon that is derived from the actor class. The balloon class then contains a static

mesh, cable component, and a physics constraint. The static mesh simulates the

balloon itself and the cable component simulates the rope that the balloon is attached

to. The balloon goes up with a looping timer by 100000 on the Z value added force to

simulate the balloon going up carrying the object that it will be attached to.

Everytime the balloon is spawned, a timer also starts to destroy the balloon after 10

seconds. When the player presses the “B” key, the player is able to spawn the balloon

and attach it to the object that the player is looking at based on the camera’s raycast.

The camera’s raycast starts on the camera and ends at the player’s camera’s forward

vector multiplied by 10000 plus the start vector. When it hits, it spawns the balloon and

automatically attaches it to the object using NetMulticast RPC. The physics constraint is

adjusted through code dynamically whenever the player spawns the balloon. The

physics constraint connects one part to the balloon and the other part to the Attack

Cube specifically and it won’t spawn if it is raycasted to other objects. For now, it

connects to the 0,0,0 of the object but in the future it's planning to change to the gaze

of the player. A linear limit also exists with the value of 300 to prevent the balloon to just

pull the cable component with no limit also with a cable length of 100.

29

The cubes that the player can make a makeshift trap with also have a velocity

detection to see if it can damage the player or not which are more than or equals to 100

on X, more than or equals to 10 on Y, more than or equals to 10 on Z.

Inspiration / Reference Images

This Physics Constraint Mechanic is inspired by some mechanics from other games.

These are the screenshots.

Source : https://www.allthingssmash.com/fighter-detail.php?char_id=10

https://www.allthingssmash.com/fighter-detail.php?char_id=71

These 2 characters are animal crossing characters that star in the super smash bros

games. These 2 characters utilise the balloon as a form of recovery to get back to the

stage. I like the way it works and even though it works differently than my mechanic, it

still inspires the balloon mechanic in a way. The way it works in the game is that the

player is getting carried by the balloon to safety but in my game, I wanted it to work on

objects instead of players.

Source : https://www.pcgamesn.com/just-cause-4/just-cause-4-grappling-hook

https://www.allthingssmash.com/fighter-detail.php?char_id=10
https://www.allthingssmash.com/fighter-detail.php?char_id=71
https://www.pcgamesn.com/just-cause-4/just-cause-4-grappling-hook

30

This picture shows a display of a balloon tethering mechanic from Just Cause 4. I like

the idea of attaching objects into a balloon and I thought it was quite comedic,

therefore I took some inspiration on the tethering part from this game.

Source : https://www.gamepressure.com/mgs5thephantompain/how-does-the-fulton-work/z17b26

This picture also inspires the balloon attaching mechanic in my game. This is from the

Metal Gear Solid series and it gives the player the ability to attach a balloon to objects

that it has already captured. I added a twist by making the balloon in my game a

makeshift trap that the player can use instead of just a capture mechanic.

https://www.gamepressure.com/mgs5thephantompain/how-does-the-fulton-work/z17b26

31

In-Engine Screenshots

In this picture, we can see the player is looking at the box that the player can attach the

balloon into.

In this picture, we can see the balloon getting attached to the box and being floated up

towards the sky.

32

This picture shows the balloon continuing to float away into the sky.

The picture shows the balloon disappeared after 10 seconds of runtime.

33

The picture shows the object that the balloons were attached to, falling to the ground

since all of the balloons are gone.

Properties and Values

Property Description of Purpose Value

Linear Limit The limit on the amount of linear

interaction the physics constraint

can sustain. This is done to limit the

cable component and balloon with

the object.

300

Angular Limit The angular limit is set to free since

the rotation of the object doesn’t

matter in the context of how the

physics constraint works.

Free

Component

Name 1

This component name ensures it

attaches to the balloon that spawns

with it.

“Balloon”

Component

Name 2

This component name ensures it

attaches to the object that the

player’s raycast hit which is the

AttackCube

“Object’s Name”

34

Balloon Force This property is added to the

balloon as a force to propel the

balloon up, giving the illusion that it

is a balloon going up to the sky.

FVector(0,0,100000.0)

DestructionTimer This property is the amount of

seconds the balloon will disappear

after.

10 Seconds

Rope (Cable

Length)

This component is the length of the

cable component that is attached

to the balloon and the object.

100.0

Diagram of Interaction

The interaction between the balloon and the object (Attack Cube) is fairly simple. It

starts attaching to the object when it is spawned, marking it as component 2 with a

linear limit 300 and free angular limit. It also pulls the object upwards by 100.000 force

on the Z axis. The physics constraint connects the interaction between the balloon and

the object itself.

35

Physics Constraint 2 - Chaos Mace

Overview of Interaction
This interaction was supposed to be a grapple interaction where the player grapples

into an object and pulls it towards the player. However, I have decided to make it a

chaos mace and integrate it into the gameplay by making the Glitch Objects that are

present on the level into a weapon. By adding the Chaos Mace, it will add

unpredictability and chaos into the gameplay which all party games should have. This

will add a sense of immersion and strategy of using the items and arsenal that are

provided within the game and provide a more interesting and interactive interaction

between the players and the enemies.

Interaction Description

How the Interaction Works

The way it works is very simple. Basically, on the player character component, a physics

constraint and a cable component is added. It uses a raycast of the player’s camera

when the player right clicks and when the raycast hits a Glitch Object, the cable

component that is called Grapple Rope is attached to the object using the physics

constraint.

Component 1 of the physics constraint is attached to a sphere component called

Grapple Sphere that is located on the head of the player. Component 2 of the physics

constraint is attached to the object that the raycast hits which could only work if it's a

Glitch Object. It also turns bIsGrappled into true to ensure that the player is grappling

into something before triggering the Chaos Mace mechanic.

When the player attaches the cable component into the Glitch Object, It attaches the

other end intot he Glitch Object and changes the colour from green to blue. It also

changes the movement of the Glitch Object shader making it more erratic. Then it

updates the hologram material that was done in the labs which also activates

Invulnerability. It also resets a timer called ChaosMaceTimerHandler and also starts a

timer with the same handler to trigger a MulticastDetachComponent in 5 seconds. ‘

In the MulticastDetachComponent function, it resets the shader of the Glitch Object to

the default one and then it detaches the end of the cable component by attaching it to

36

the GrappleSphere which is its source itself. It also resets bIsGrappled so the player can

grapple again and it disables Invulnerability. It also stops the pulling of the physics

constraint. The changes that occur are the physics constraint’s Linear PositionDrive and

the LinearVelocityDrive are all set to false on the X, Y, and Z axis

On the BeginPlay function, the physics constraint’s linear drive params are set to 1000.0f

on position strength, 100.0f on velocity strength and 0 on InForceLimit. Then, it also

disables the collision on the physics constraint. It is worth mentioning that these are

high numbers but in order to make it have the chaos movement, it needs to have a

high number. When the player holds the “Q” button, chaos will start and the object that

the grapple rope is attached to will start acting in chaos and act as a chaos mace.

The changes that occur are the physics constraint linear position drive will be set to

true on X, Y, and Z. It also sets the linear position target to the component location of the

grapple sphere that is initialised. The Linear Velocity Drive will also be set to true on X, Y,

and Z and the Linear Velocity Target will also be the grapplesphere’s component

location. These changes are made in a NetMulticast RPC that is called from a Server

RPC. When the object that it attaches to reaches a specific velocity which is more than

or equals to 100 on X, more than or equals to 10 on Y, more than or equals to 10 on Z, it

will damage the player when it hits the player by 10 damage.

When the player stops holding the “Q” button, the chaos stops. The changes that occur

are the physics constraint’s Linear PositionDrive and the LinearVelocityDrive are all set

to false on the X, Y, and Z axis. The position will also be set to the GrappleSphere

Component just in case for both LinearPositionTarget and LinearVelocityTarget.

Inspiration / Reference Images

This Physics Constraint Mechanic is inspired by some media rather than game

mechanics of other games since it is quite unique. Here are some of the references :

37

Source : https://www.cgtrader.com/3d-models/military/melee/flail-mace

I was inspired by the concept of mace in video games. I feel like maces are quite

underrated and underutilised within video games as a weapon therefore, I decided to

implement them. I also added a twist by not making it necessarily just a mace but

making it act like it with a different theme which will be discussed in the next reference.

Source : https://www.ign.com/articles/how-to-watch-the-matrix-movies-in-chronological-order

https://www.cgtrader.com/3d-models/military/melee/flail-mace
https://www.ign.com/articles/how-to-watch-the-matrix-movies-in-chronological-order

38

I was inspired by the concept of the matrix especially in video games. The matrix

inspires me to look at the concept of adding intentional bugs to video games.

Therefore, when creating the chaos mace, I made it look like its buggy even but instead

of it being just a buggy feature in the game, I made it so that it's a weapon that the

player can use. This is heavily inspired by the matrix and how I can think outside the box

on making video games.

In-Engine Screenshots

This picture shows the player standing still looking at the chaos object that the player

can attach the chaos grapple to.

39

After the player presses right click towards the object, the player’s grapple rope is

attached to the object.

This picture demonstrates when the player holds Q, the chaos mace mechanic starts

and it's getting flung around the player.

40

This picture demonstrates the speed and impact the chaos mace has to the gameplay.

It is so fast that it is hard to capture with just a mere screenshot.

This is another screenshot showcasing the speed of the chaos mace when it is

surrounding the player.

Properties and Values

Property Description of Purpose Value

41

LinearPositionDriv

e

Enables or disables the

LinearPositionDrive of the physics

constraint.

When Active = True for X,Y,

and Z. When Inactive =

false for X, Y, and Z

LinearVelocityDriv

e

Enables or disables the

LinearVelocityDrive of the physics

constraint.

When Active = True for X,Y,

and Z. When Inactive =

false for X, Y, and Z

LinearPositionTarg

et

Sets the linear position target of the

linear motor of the physics

constraint.

GrappleSphere->GetComp

onentLocation()

LinearVelocityTar

get

Sets the linear velocity target of the

linear motor of the physics

constraint

GrappleSphere->GetComp

onentLocation()

PositionStrength Sets the position strength of the

linear motor.

1000.0f

VelocityStrength Sets the velocity strength of the

linear motor.

100.0f

DisableCollision Enables or disables collision of the

PhysicsConstraint

true

Linear Limit The limit on the amount of linear

interaction the physics constraint

can sustain. This is done to limit the

cable component and the object

that it is connected with.

1.0

Angular Limit The angular limit is set to free since

the rotation of the object doesn’t

matter in the context of how the

physics constraint works.

Free

Component

Name 1

This component name ensures it

attaches to the GrappleSphere

component in the Player

component.

“GrappleSphere”

Component

Name 2

This component name ensures it

attaches to the object that the

player’s raycast hit.

“Object’s Name”

42

GrappleRope

(Cable Length)

This component is the length of the

cable component that is attached

to the balloon and the object.

1.0

Diagram of Interaction

The cable component is connected to the grapple sphere that is located on the

player’s head. This diagram shows how it works when it is triggered and the chaos

mace is active. Basically, the position strength and the velocity strength is activated

with the values that are shown. Then, the object goes everywhere in a chaotic manner.

43

Advanced Niagara Particle Effect

Niagara Particle Effect - Hit

Overview of Effect

The hit particle is a very simple particle that is combined with complex visuals of blood.

This particle displays the damage that is inflicted to the players and also the blood that

comes out of the damage numbers. The damage numbers change dynamically based

on how much damage is inflicted to each player. The impact on this to the gameplay is

quite significant.

This particle effect can tell the player how much damage the player has done to the

enemy or the player itself. This increases the immersivity of the gameplay experience of

the player and the enemies itself. The blood as well increases the visual queue of when

the player gets damaged or damaged. This makes it very clear of when the player is

damaging somebody or getting damaged with the amount of damage that was

shown.

The colour of the blood is red with a white colour on the damage text that appears and

fades away over time. The red coloured is due to the fact that blood is usually red

coloured and the aspect of the colour red is aesthetically pleasing compared to some

other colours. The white colour on the damage text is due to the accessibility of the

game itself. By making it a glowing white colour, it provides ease of readability of the

damage text when the players are interacting with it.

Effect Description

The effect itself is widely used in video games, especially shooters. In shooters, damage

numbers usually appear after the players shoot at the enemies. This is a good indicator

and makes it clear for the player to see how much damage they do to the enemy. The

blood effect is also fairly common to use in games generally such as the Borderlands

series, fortnite, etc. However, the way my blood effect works is that instead of it being

regular blood coming out of a player, it instead blood effects raining down on the

player. The damage numbers also have the colour white which is easy to read for

everyone.

44

Inspiration / Reference Images:

This Advanced Particle Effect is inspired by some video games as mentioned before.

Here are some reference images from the games that I was inspired by :

Source :

https://gaming.stackexchange.com/questions/98684/why-dont-these-e-tech-snipers-seem-as-awesome-as-the-st

ats-indicate

This image is from the Borderlands Series, specifically Borderlands 2. I was inspired by

the simplicity of how the damage numbers react when the player shoots at an enemy.

The damage numbers appear and disappear on the screen indicating how much

damage the player does.

https://gaming.stackexchange.com/questions/98684/why-dont-these-e-tech-snipers-seem-as-awesome-as-the-stats-indicate
https://gaming.stackexchange.com/questions/98684/why-dont-these-e-tech-snipers-seem-as-awesome-as-the-stats-indicate

45

Source : https://gamewith.net/fortnite/article/show/182

This image is from the game Fortnite. The game itself is a very popular shooter with

various damage numbers that appear based on the character’s shield or not. This

inspires me to create my own floating damage particle as well.

Source : https://www.pcmag.com/reviews/borderlands-2-for-playstation-vita

Going back to Borderlands again, I was inspired by how the blood works in the game.

Even though I didn’t necessarily implement it like the way it works in Borderlands, I was

still inspired by how the texture of it works overall.

https://gamewith.net/fortnite/article/show/182
https://www.pcmag.com/reviews/borderlands-2-for-playstation-vita

46

In-Engine Screenshots:

It can be seen that in the screenshot, I shot the other player with the weapon and a

damage number of 20 came up. The blood particle also appeared on top of the player

itself.

It can be seen on the screenshot that I made it so that it dissipates after it spawns into

thin air.

47

In the picture above, it can be seen that the particles are not there anymore. It's

because the particle effect has already dissipated and gone from the world after it

spawned with the Spawn Burst Instantaneous Module.

Properties and Values

Floating_Numbers Emitter

Property Description of Purpose Value

Life Cycle Mode Determines whether the life cycle

(Managing looping, age, and death)

of the Emitter is calculated by the

system that owns it, or by the

emitter itself.

Self

Inactive

Response

Determines what happens when the

emitter itself enters an inactive state

Continue (Emitter

Deactivates but Doesn’t

Die until System Does)

Loop Behavior Determines what happens when the

Loop Duration is exceeded and what

values are calculated.

Once

Loop Duration Establishes the duration of the

emitter life cycle.

1.5

48

Spawn Particles

in Grid

Used to spawn the particles in the

grid of the world.

Y Count 256, Z Count 256

Lifetime Mode Lifetime of the particle Direct Set 1.5

Colour Mode The colour of the particle Direct Set : R 1.0, G

0.025346, B 0.0, A 1.0

Sprite Size Mode Determine the scale of the sprites of

the particle

Uniform 1.0

Coordinate

Space

Defines the originating space of the

position before being transformed

into the destination space of the

emitter.

Local

Normalize Offsets Scale both the “Offset” and

“Randomize Placement within Cell

Field” by the grid cell size. Which will

mean that a value of 1 in the “Offset”

field will produce a single cell shift in

position.

true

Grid Location Spawn particles spaced evenly on a

grid

Mentioned Next Tables

Grid

Location->Dimen

sions Definition

“Padding Per Cell” places each

particle at a set distance from its

neighbours

Padding Per Cell

Grid

Location->XYZ

Dimensions

Define the volume that the particles

will occupy

X 0.25, Y 0.25, Z 0.25

Sample Texture Sample a texture at a specific UV

location and returns the color

true

Texture The Texture to sample user.Digit

Kill Particles Kill Particles if the boolean input into

the module is true. Allows for

Set Bool by Float

Comparison -> A = Make

49

particles to be dynamically killed

based on a boolean conditional at

any point in the execution stack.

Float from Linear color

(LinearColor =

STACKCONTEXT

SampledColor, Channel =

A), B = 0.1

Comparison Type = A Less

than B

Kill Particles

When Lifetime

Has Elapsed

Determines if particles live forever or

not

true

Curl Noise Force

Strength

Scales the sampled curl noise force

vector

FloatCurve :

Scale Curve = 200.0

Noise Frequency = 10.0

Acceleration Acceleration Amount Z = 100.0

Point Attraction

Force Strength

The strength of the point attraction 15.0

Point Attraction

Radius

The radius of the point attraction. 100.0

Falloff Exponent Exponent to apply to the falloff. 0.5

Solve Forces and

Velocity

Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the

current Velocity. Outputs the

updated Particles. Velocity and

Particles.Position.

Active

Sprite Renderer

Material

The material used to render the

particle/ Not that it must have the

Use with Niagara Sprites flag

checked.

M_FloatingNumbers

50

Blood Emitter

Property Description of Purpose Value

Life Cycle Mode Determines whether the life cycle

(Managing looping, age, and death)

of the Emitter is calculated by the

system that owns it, or by the

emitter itself.

Self

Inactive

Response

Determines what happens when the

emitter itself enters an inactive state

Continue (Let Particles

Finish then Kill Emitter)

Loop Behavior Determines what happens when the

Loop Duration is exceeded and what

values are calculated.

Once

Loop Duration Establishes the duration of the

emitter life cycle.

2.0

Spawn Burst

Instantaneous

Spawns a burst of particles

instantaneously

Spawn Count = 50, Spawn

Time = 0.1

Lifetime Mode Lifetime of the particle Random Between 0.4 and

0.8

Colour Mode The colour of the particle Direct Set : R 1.0, G 0.0, B 0.0,

A 1.0

Sprite Size Mode Determine the scale of the sprites of

the particle

Random Uniform between

40.0 and 60.0

Shape Primitive The shape of what the particle will

spawn into

Sphere

Sphere Radius The radius of the sphere primitive 8.0

Velocity Mode The added velocity mode to the

particle

In Cone

Velocity Speed The added speed of the velocity of

the particle

Random Range Float (Min

0.0, Max 240.0)

51

Distribution Along

Cone Axis

Base the random vector to prefer

adding velocity in the direction of

the cone axis 0 is no bias, 1

encourages most of the random

velocities to be along the axis of the

cone.

0.25

Speed Fall Off

From Cone Axis

Decrease the added speed as the

direction deviates from the Cone

Axis

0.5

Cone Axis Axis of the Cone Velocity Mode 0.0, 0.0, 1.0

Cone Angle Angle of the Cone Velocity Mode 50.0

Particle State Manages Particle Age / Lifetime Kill Particles When Lifetime

Has Elapsed (true)

Rotation Rate Scale factor on Delta Time for global

speedup (or bypassing) of rotation.

Random Range Float

(Minimum -100.0,

Maximum 100.0, Evaluation

Type : Spawn Only)

Scale Sprite Size Takes the initial sprite scale as set in

the spawn script, and scales it by a

scale factor

Uniform Curve -> Curve for

Floats

Drag Applies Drag directly to particle

velocity and/or rotational velocity,

irrespective of Mass.

0.25

Scale Color By Default, accepts the initial color

as determined in the particle spawn

script (Cached off as Particles Initial

Color), and scales the RGB and

Alpha components separately.

Scale Mode = RGB and

Alpha Separately

Scale RGB (X 1.0, Y 1.0, Z 1.0)

Scale Alpha (Float from

Curve)

52

Gravity Force Applies a gravitational force (in

cm/s) to Transient.PhysicsForce

Random Range vector

(Minimum (X 0.0, Y 0.0, Z

-160.0), Maximum (X 1.0,

Y1.0, Z 40.0)

Evaluation Type : Spawn

Only

Solve Forces and

Velocity

Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the

current Velocity. Outputs the

updated Particles. Velocity and

Particles.Position.

Active

Dynamic Material

Parameters

Write to the Dynamic Parameter

vertex interpolator node in the

material editor

Mentioned Next Tables

Dynamic Material

Parameters->Tile

The override value for tiling the

particle materials

Random Range Float (Min

1.0, Max 2.0)

Evaluation Type : Spawn

Only

Dynamic Material

Parameter->Pan

The override value for speed of

panning the particle materials

Random Range Float (Min

-0.5, Max 0.5)

Evaluation Type : Spawn

Only

Dynamic Material

Parameter->Diss

olve

The override value for dissolving the

particle materials

Curve for Floats

Sprite Renderer

Material

The material used to render the

particle/ Not that it must have the

Use with Niagara Sprites flag

checked.

M_Blood

53

Blood0001 Emitter

Property Description of Purpose Value

Life Cycle Mode Determines whether the life cycle

(Managing looping, age, and death)

of the Emitter is calculated by the

system that owns it, or by the

emitter itself.

Self

Inactive

Response

Determines what happens when the

emitter itself enters an inactive state

Continue (Let Particles

Finish then Kill Emitter)

Loop Behavior Determines what happens when the

Loop Duration is exceeded and what

values are calculated.

Once

Loop Duration Establishes the duration of the

emitter life cycle.

2.0

Spawn Burst

Instantaneous

Spawns a burst of particles

instantaneously

Spawn Count = 50, Spawn

Time = 0.0

Lifetime Mode Lifetime of the particle Random Between 0.2 and

1.0

Colour Mode The colour of the particle Direct Set : R 1.0, G 0.0, B 0.0,

A 1.0

Sprite Size Mode Determine the scale of the sprites of

the particle

Random Non-Uniform

between X 30.0 Y 60.0 and

X = 40.0 Y = 100.0

Shape Primitive The shape of what the particle will

spawn into

Sphere

Sphere Radius The radius of the sphere primitive 8.0

Velocity Mode The added velocity mode to the

particle

In Cone

54

Velocity Speed The added speed of the velocity of

the particle

Random Range Float (Min

10.0, Max 300.0)

Distribution Along

Cone Axis

Base the random vector to prefer

adding velocity in the direction of

the cone axis 0 is no bias, 1

encourages most of the random

velocities to be along the axis of the

cone.

0.25

Speed Fall Off

From Cone Axis

Decrease the added speed as the

direction deviates from the Cone

Axis

0.5

Cone Axis Axis of the Cone Velocity Mode 0.0, 0.0, 1.0

Cone Angle Angle of the Cone Velocity Mode 100.0

Particle State Manages Particle Age / Lifetime Kill Particles When Lifetime

Has Elapsed (true)

Scale Sprite Size Takes the initial sprite scale as set in

the spawn script, and scales it by a

scale factor

Uniform Curve -> Curve for

Floats

Drag Applies Drag directly to particle

velocity and/or rotational velocity,

irrespective of Mass.

0.25

Scale Color By Default, accepts the initial color

as determined in the particle spawn

script (Cached off as Particles Initial

Color), and scales the RGB and

Alpha components separately.

Scale Mode = RGB and

Alpha Separately

Scale RGB (X 1.0, Y 1.0, Z 1.0)

Scale Alpha (Float from

Curve)

Solve Forces and

Velocity

Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Active

55

Engine.DeltaTime and adds to the

current Velocity. Outputs the

updated Particles. Velocity and

Particles.Position.

Dynamic Material

Parameters

Write to the Dynamic Parameter

vertex interpolator node in the

material editor

Mentioned Next Tables

Dynamic Material

Parameters->Tile

The override value for tiling the

particle materials

Random Range Float (Min

0.2, Max 2.0)

Evaluation Type : Spawn

Only

Dynamic Material

Parameter->Pan

The override value for speed of

panning the particle materials

Random Range Float (Min

-0.5, Max 0.5)

Evaluation Type : Spawn

Only

Dynamic Material

Parameter->Diss

olve

The override value for dissolving the

particle materials

Curve for Floats

Sprite Renderer

Material

The material used to render the

particle/ Not that it must have the

Use with Niagara Sprites flag

checked.

M_Blood

Blood0002 Emitter

Property Description of Purpose Value

Life Cycle Mode Determines whether the life cycle

(Managing looping, age, and death)

of the Emitter is calculated by the

system that owns it, or by the

emitter itself.

Self

56

Inactive

Response

Determines what happens when the

emitter itself enters an inactive state

Continue (Let Particles

Finish then Kill Emitter)

Loop Behavior Determines what happens when the

Loop Duration is exceeded and what

values are calculated.

Once

Loop Duration Establishes the duration of the

emitter life cycle.

2.0

Spawn Burst

Instantaneous

Spawns a burst of particles

instantaneously

Spawn Count = 300,

Spawn Time = 0.0

Lifetime Mode Lifetime of the particle Random Between 1.0 and

3.0

Colour Mode The colour of the particle Direct Set : R 1.0, G 0.0, B 0.0,

A 1.0

Sprite Size Mode Determine the scale of the sprites of

the particle

Random Uniform between

40.0 and 50.0

Shape Primitive The shape of what the particle will

spawn into

Sphere

Sphere Radius The radius of the sphere primitive 8.0

Velocity Mode The added velocity mode to the

particle

In Cone

Velocity Speed The added speed of the velocity of

the particle

Random Range Float (Min

100.0, Max 410.0)

Distribution Along

Cone Axis

Base the random vector to prefer

adding velocity in the direction of

the cone axis 0 is no bias, 1

encourages most of the random

velocities to be along the axis of the

cone.

0.25

57

Speed Fall Off

From Cone Axis

Decrease the added speed as the

direction deviates from the Cone

Axis

0.5

Cone Axis Axis of the Cone Velocity Mode 0.0, 0.0, 1.0

Cone Angle Angle of the Cone Velocity Mode 50.0

Particle State Manages Particle Age / Lifetime Kill Particles When Lifetime

Has Elapsed (true)

Scale Sprite Size Takes the initial sprite scale as set in

the spawn script, and scales it by a

scale factor

Uniform Curve -> Curve for

Floats

Drag Applies Drag directly to particle

velocity and/or rotational velocity,

irrespective of Mass.

0.25

Scale Color By Default, accepts the initial color

as determined in the particle spawn

script (Cached off as Particles Initial

Color), and scales the RGB and

Alpha components separately.

Scale Mode = RGB and

Alpha Separately

Scale RGB (X 1.0, Y 1.0, Z 1.0)

Scale Alpha (Float from

Curve)

Gravity Force Applies a gravitational force (in

cm/s) to Transient.PhysicsForce

Random Range vector

(Minimum (X 0.0, Y 0.0, Z

-210.0), Maximum (X 1.0,

Y1.0, Z -40.0)

Evaluation Type : Spawn

Only

Collision Enabled Enable or disable the module’s

affect on the effect

enabled

Radius

Calculation Type

Each particle’s collision radius will

be calculated for you, per frame ,

using the methods laid out below.

Sprite

58

Method for

Calculating

Particles Radius

This enum changes the way that

each particle’s collision radius is

calculated.

Bounds

Particle Radius

Scale

This value scales the calculated

particle collision radius

1.0

Restitution This controls the particle’s bounce

coefficient. 1 will retain all of the

particle’s energy along the impact

normal vector and 0 will remove it.

0.0

Simple Friction If true, fewer parameters will be

used to control the friction

coefficient.

true

Friction The friction coefficient defines how

quickly a particle will slow down as it

slides across a surface

0.25

Enable Rest State This will pause particles that

penetrate surfaces more often than

the specified rate and particles that

have penetrated a surface more

deeply than allowed.

true

Maximum

Penetration

Correction

This number specifies the maximum

number of units that a particle can

be pulled out of another surface

before being instantaneously forced

into a rest state

0.5

Percentage of

Penetration

Before

Particles will enter a rest state if they

are found to penetrate surfaces

more often than this float allows

over the “Rest State Time Range”

1.0

Rest State Time

Range

This is the amount of time that a

particle’s interpenetrations will be

0.5

59

tracked over when determining if it

should enter a rest state.

Solve Forces and

Velocity

Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the

current Velocity. Outputs the

updated Particles. Velocity and

Particles.Position.

Active

Dynamic Material

Parameters

Write to the Dynamic Parameter

vertex interpolator node in the

material editor

Mentioned Next Tables

Dynamic Material

Parameters->Tile

The override value for tiling the

particle materials

Random Range Float (Min

0.1, Max 0.2)

Evaluation Type : Spawn

Only

Dynamic Material

Parameter->Pan

The override value for speed of

panning the particle materials

Random Range Float (Min

-0.1, Max 0.1)

Evaluation Type : Spawn

Only

Dynamic Material

Parameter->Diss

olve

The override value for dissolving the

particle materials

Curve for Floats

Sprite Renderer

Material

The material used to render the

particle/ Not that it must have the

Use with Niagara Sprites flag

checked.

M_Blood

Blood0003 Emitter

Property Description of Purpose Value

60

Life Cycle Mode Determines whether the life cycle

(Managing looping, age, and death)

of the Emitter is calculated by the

system that owns it, or by the

emitter itself.

Self

Inactive

Response

Determines what happens when the

emitter itself enters an inactive state

Continue (Let Particles

Finish then Kill Emitter)

Loop Behavior Determines what happens when the

Loop Duration is exceeded and what

values are calculated.

Once

Loop Duration Establishes the duration of the

emitter life cycle.

2.0

Spawn Burst

Instantaneous

Spawns a burst of particles

instantaneously

Spawn Count = 50, Spawn

Time = 0.1

Lifetime Mode Lifetime of the particle Random Between 0.5 and

1.0

Colour Mode The colour of the particle Random : R 0.2, G 0.0, B 0.0,

A 1.0

Hue Shift Range X -0.1 Y 0.1

Saturation Range 0.8 Y 1.5

Value Range X 0.2 Y 1.0

Alpha Scale Range X 0.8 Y

2.0

Sprite Size Mode Determine the scale of the sprites of

the particle

Random Uniform between

40.0 and 60.0

Shape Primitive The shape of what the particle will

spawn into

Sphere

Sphere Radius The radius of the sphere primitive 8.0

Velocity Mode The added velocity mode to the

particle

In Cone

61

Velocity Speed The added speed of the velocity of

the particle

Random Range Float (Min

0, Max 240.0)

Distribution Along

Cone Axis

Base the random vector to prefer

adding velocity in the direction of

the cone axis 0 is no bias, 1

encourages most of the random

velocities to be along the axis of the

cone.

0.25

Speed Fall Off

From Cone Axis

Decrease the added speed as the

direction deviates from the Cone

Axis

0.5

Cone Axis Axis of the Cone Velocity Mode 0.0, 0.0, 1.0

Cone Angle Angle of the Cone Velocity Mode 100.0

Particle State Manages Particle Age / Lifetime Kill Particles When Lifetime

Has Elapsed (true)

Scale Sprite Size Takes the initial sprite scale as set in

the spawn script, and scales it by a

scale factor

Uniform Curve -> Curve for

Floats

Drag Applies Drag directly to particle

velocity and/or rotational velocity,

irrespective of Mass.

0.5

Scale Color By Default, accepts the initial color

as determined in the particle spawn

script (Cached off as Particles Initial

Color), and scales the RGB and

Alpha components separately.

Scale Mode = RGB and

Alpha Separately

Scale RGB (X 1.0, Y 1.0, Z 1.0)

Scale Alpha (Float from

Curve)

Gravity Force Applies a gravitational force (in

cm/s) to Transient.PhysicsForce

Random Range vector

(Minimum (X 0.0, Y 0.0, Z

-120.0), Maximum (X 1.0,

62

Y1.0, Z -90.0)

Evaluation Type : Spawn

Only

Solve Forces and

Velocity

Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the

current Velocity. Outputs the

updated Particles. Velocity and

Particles.Position.

Active

Dynamic Material

Parameters

Write to the Dynamic Parameter

vertex interpolator node in the

material editor

Mentioned Next Tables

Dynamic Material

Parameters->Tile

The override value for tiling the

particle materials

Random Range Float (Min

0.5, Max 1.0)

Evaluation Type : Spawn

Only

Dynamic Material

Parameter->Pan

The override value for speed of

panning the particle materials

Random Range Float (Min

-0.5, Max 0.5)

Evaluation Type : Spawn

Only

Dynamic Material

Parameter->Diss

olve

The override value for dissolving the

particle materials

Curve for Floats

Sprite Renderer

Material

The material used to render the

particle/ Not that it must have the

Use with Niagara Sprites flag

checked.

M_Blood_Opacity

Blood0004 Emitter

Property Description of Purpose Value

63

Life Cycle Mode Determines whether the life cycle

(Managing looping, age, and death)

of the Emitter is calculated by the

system that owns it, or by the

emitter itself.

Self

Inactive

Response

Determines what happens when the

emitter itself enters an inactive state

Continue (Let Particles

Finish then Kill Emitter)

Loop Behavior Determines what happens when the

Loop Duration is exceeded and what

values are calculated.

Once

Loop Duration Establishes the duration of the

emitter life cycle.

2.0

Spawn Burst

Instantaneous

Spawns a burst of particles

instantaneously

Spawn Count = 50, Spawn

Time = 0.1

Lifetime Mode Lifetime of the particle Random Between 0.8 and

1.0

Colour Mode The colour of the particle Direct Set : R 0.2, G 0.0, B

0.0, A 1.0

Sprite Size Mode Determine the scale of the sprites of

the particle

Random Uniform between

40.0 and 200.0

Shape Primitive The shape of what the particle will

spawn into

Sphere

Sphere Radius The radius of the sphere primitive 8.0

Sprite Facing and

Alignment

Changes the sprite faces and

alignment

X 0.0, Y 0.0, Z 1.0

Particle State Manages Particle Age / Lifetime Kill Particles When Lifetime

Has Elapsed (true)

Rotation Rate Scale factor on Delta Time for global

speedup (or bypassing) of rotation.

Random Range Float

(Minimum -100.0,

Maximum 100.0, Evaluation

64

Type : Spawn Only)

Scale Sprite Size Takes the initial sprite scale as set in

the spawn script, and scales it by a

scale factor

Uniform Curve -> Curve for

Floats

Scale Color By Default, accepts the initial color

as determined in the particle spawn

script (Cached off as Particles Initial

Color), and scales the RGB and

Alpha components separately.

Scale Mode = RGB and

Alpha Separately

Scale RGB (X 1.0, Y 1.0, Z 1.0)

Scale Alpha (Float from

Curve)

Solve Forces and

Velocity

Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the

current Velocity. Outputs the

updated Particles. Velocity and

Particles.Position.

Active

Dynamic Material

Parameters

Write to the Dynamic Parameter

vertex interpolator node in the

material editor

Mentioned Next Tables

Dynamic Material

Parameters->Tile

The override value for tiling the

particle materials

Random Range Float (Min

1.0, Max 2.0)

Evaluation Type : Spawn

Only

Dynamic Material

Parameter->Pan

The override value for speed of

panning the particle materials

Random Range Float (Min

-0.5, Max 0.5)

Evaluation Type : Spawn

Only

Dynamic Material

Parameter->Diss

olve

The override value for dissolving the

particle materials

Curve for Floats

65

Sprite Renderer

Material

The material used to render the

particle/ Not that it must have the

Use with Niagara Sprites flag

checked.

M_Blood

Niagara System / Emitters Breakdown

This is the overview of the emitters. This particle has a total of 6 emitters. The combined

effect of the 6 emitters created the floating damage particles combined with the blood.

Particle effects. Here are the details of each emitter and custom materials :

Custom Materials

Custom Material 1 - M_Blood

66

I added this custom material for the blood particles. The way it works is simple, it uses

an opacity mask to make the blood sprite effect and then it also uses a dynamic

parameter to adjust the values accordingly to what I want it to look like. From the

dynamic parameter value, it adjusts the normal map movement.

Custom Material 2- M_Blood_Opacity

The way this custom material works is fairly similar but the difference is that the opacity

of the particle is adjusted through the material instead of the normals.

Emitters

Emitter 1- Floating_Numbers Emitter

The floating number emitters are very simple. It spawns on the top of

the spawn location which is the player. Then, it spawns the texture that

is connected to C++ for the amount of damage that the player does to

the player. Then it disappears after a while curling into thin air.

67

Emitter 2 - Blood Emitter

This emitter emulates a simple blood splatter. This uses

a custom material that I made and splatters in a semi

realistic manner. This is also combined with drag,

gravity force, and the dynamic material parameters for

the custom material, creating this optimal effect of the

particle. This spawns with the floating damage as well splattering down

to the player from above. The shape location of the spawn is a sphere

which can be fairly changed but a sphere usually suffices. The sprite

rotation rate is also important to give the effect of the splatter when the

sprite just spawned and it rotates outwards. Velocity is also added to

simulate the splatter.

Emitter 3 - Blood0001 Emitter

This emitter has almost the same properties as the

previous emitter. The only difference is that it has less

volume but spreads more. This is done to create a sense

of spread of the blood instead of just a larger volume

spreading into a small area.

Emitter 4 - Blood0002 Emitter

This emitter also has similar properties as the previous

ones but the values of it are changed and tinkered. The

difference is also that it has a more chunk-like

consistency and also it collides with the environment

making it look like a mixture of blood and flower petals.

Since I want the effect to look grotesque yet beautiful, I

added this emitter as well.

68

Emitter 5 - Blood0003 Emitter

This emitter has a similar value with the previous

emitter but some of the values are tinkered. The

difference is also in the custom material. I made it so

that it has a certain type of opacity into it making it

more transparent than the previous emitters. This

creates a more layered effect of the blood splatter making it more

immersive and look better.

Emitter 6 - Blood0004 Emitter

This emitter is very different compared to the previous

emitters. The way this emitter works is that it spawns as

if it looks like a portal or a pool of blood. The way I did

this is by adding a Sprite Facing and Alignment node

and adjusting it accordingly. I also tinkered with the values of the

modules that were provided before. This creates a more immersive

effect of the blood overall.

C++ Parameters Breakdown

The C++ user exposed parameter is called Digit. The intended purpose of the

parameter is to input the amount of damage that the player inflicted on the particles

so that the particle can use the appropriate number to display to the players. This is

also controlled by code. Since Niagara doesn’t have a code that changes the UTexture

from the particle component properly that I know of, I made a separate function.

void AA01_BlockoutShooterCharacter::SetNiagaraVariableTexture(const

UNiagaraComponent* Niagara,

const FString& InVariableName, UTexture* InValue)

69

void AA01_BlockoutShooterCharacter::MulticastSpawnHitParticles_Implementation(int

DamageAmount, FVector HitLocation)

{

// Setup local variables

FVector Location = HitLocation;

TArray<int32> DamageArray;

// Convert the DamageAmount into a string

FString DamageString = UKismetStringLibrary::Conv_IntToString(DamageAmount);

// Get every single string component into an array

for(int i = 0; i < DamageString.Len(); i++)

{

int DividedVariable = 10 * i;

if(DividedVariable == 0)

{

DamageArray.Emplace(DamageAmount % 10);

}

else

{

DamageArray.Emplace(DamageAmount / DividedVariable % 10);

}

}

// Reverse the array so it matches the damage

Algo::Reverse(DamageArray);

// Start going through the made array

for (auto& Number : DamageArray)

{

if(NS_Hit)

{

// Spawn the particle

The way I spawn the particles and use the code is also fairly interesting.

{

if(!Niagara || !InValue)

{

return;

}

FName VarName = FName(*InVariableName);

FNiagaraUserRedirectionParameterStore& OverrideParameters =

(FNiagaraUserRedirectionParameterStore&)Niagara->GetOverrideParameters();

UNiagaraDataInterfaceTexture* Data =

(UNiagaraDataInterfaceTexture*)OverrideParameters.GetDataInterface(FNiagaraVariabl

e(FNiagaraTypeDefinition(UNiagaraDataInterfaceTexture::StaticClass()), VarName));

if(Data)

{

Data->Texture = InValue;

}

}

70

Basically, the damage that is done to the player is stored in an int32 array so first I

initialised an empty int32 array. Then I converted the damage that was done to the

player to string and made it so that based on the length of the string, it adds numbers

to the empty array that was initialised earlier. Then, I reversed the array since I want the

numbers to be shown properly and if I don’t reverse it, it’ll show backwards. Then, after

spawning it, the textures that are spawned are based on what the number is based on

the array and it will replace the DigitSystem user exposed variable based on the

UTexture files that I have set up from the number 0 to number 9. There are also offsets

when it spawns so that the numbers don’t get spawned on top of each other. With this,

it creates an optimal damage number that appears as a sprite with the adjusted

UTexture files.

DigitSystem = UNiagaraFunctionLibrary::SpawnSystemAtLocation(GetWorld(), NS_Hit,

FVector(HitLocation.X, HitLocation.Y, HitLocation.Z + 100), FRotator(180, 180,0));

// Add offset so the numbers dont overlap

DigitSystem->AddLocalOffset(FVector(0,TextOffset, 0), false, nullptr);

TextOffset += 30;

}

// Put the texture based on what is on the array

if(DigitSystem)

{

SetNiagaraVariableTexture(DigitSystem, "user.Digit", NumberTextures[Number]);

}

}

// Reset text offset when all hit particles spawned

TextOffset = 0;

}

71

Destruction Aware Niagara Particle Effect

Niagara Particle Effect - Lightning

Overview of Effect

The destruction aware particle effect that I included in the game is impactful in a way

to indicate when the geometry collections have collided with objects. Basically, when

the wall is hit, it creates lightning sparks that come out of it. The effect itself looks

aesthetically pleasing and flashy. This can give an indicator of the wall being collided

and hit. The effect itself also has a large scale size that can take the player off guard.

Other than being an indicator, the impact of this particle overall gives the player a more

immersive experience when the player destroys the geometry collections that are

present within the level.

The colour of the particles are also dominantly blue with a hint of red on some parts of

the particles. This is done to create an aesthetically pleasing contrast between both of

the colours rather than blending similar colours together. This gives the player extra

immersion and a certain type of satisfaction when walls are being collided due to the

bold combination of blue and red that even though has a very high contrast, it still

works very well. Different from the typical particles that are subtle and blend with the

wall or geometry collection, this creates a very flashy and contrast effect.

Effect Description

The effect itself is not as commonly used in video games as the blood and the damage

numbers particles. However, the effect can still be quite effective when used correctly.

The type of destruction data being listened to is called through collisions. This can

spawn the lightning particle outwards from where it collided.

Inspiration / Reference Images:

For inspiration and references, there are a couple of things that I found throughout the

internet. Here are the reference image that I found to make this particle effect :

Source : https://www.pinterest.ca/pin/165366617548201472/

While I was scrolling through memes, I stumbled upon this meme.

This endearing meme has the lightning effect that I was looking for

making it suitable as a reference image.

https://www.pinterest.ca/pin/165366617548201472/

72

Source :

https://www.polygon.com/2019/9/4/20850148/star-wars-jedi-knight-2-jedi-outcast-nintendo-switch-nintendo-direct

This picture gives me the effect of the lightning that I want. This is an image from the

game Star Wars Jedi Knight II. The lightning effect which is from a move called Force

Lightning is fairly simple but effective, therefore I used this as well as a reference.

In-Engine Screenshots:

In this image, it can be seen that the projectile is going towards the wall.

https://www.polygon.com/2019/9/4/20850148/star-wars-jedi-knight-2-jedi-outcast-nintendo-switch-nintendo-direct

73

In this image, it can be seen that the wall got hit by the projectile and red sparks started

coming out. This embarks the first phase of the lightning particles.

From the red sparks, the blue lightning particles are spawned. A lot of blue lightning

particles are spawned from it that will dissipate overtime.

74

From this image, it can be seen that the lightning starts to dissipate from the source.

From this image, it can be seen that the lightning almost dissipates completely. This

means the particle will disappear overtime after no collisions are spawned again.

75

From his image, it can be seen that the lightning has dissipated leaving only small trails

left. This explains how the lightning disappears and how it can and will disappear

completely after a specific amount of time.

Properties and Values

Source Emitter

Property Description of Purpose Value

Life Cycle Mode Determines whether the life cycle

(Managing looping, age, and death)

of the Emitter is calculated by the

system that owns it, or by the

emitter itself.

System

Spawn from

Chaos

Spawn particles based on event

data from a Chaos solver

New Chaos Destruction

Data

(TrailLightningChaosData),

Spawn Percentage

Fraction = 1.0

Lifetime Mode Lifetime of the particle Random Between 0.1 and

0.5

Colour Mode The colour of the particle Direct Set : R 100.0, G 0.0, B

0.0, A 1.0

76

Sprite Size Mode Determine the scale of the sprites of

the particle

Uniform 15.0

Shape Primitive The shape of what the particle will

spawn into

Sphere

Sphere Radius The radius of the sphere primitive 8.0

Velocity Mode The added velocity mode to the

particle

From Point

Velocity Speed The added speed of the velocity of

the particle

Random Range Float (Min

800.0, Max 1000.0)

Apply Chaos

Data

Set particle position, velocity and

color from a Chaos solver

New Chaos Destruction

Data =

TrailingLightningChaosDat

a

Particle State Manages Particle Age / Lifetime Kill Particles When Lifetime

Has Elapsed (true)

Gravity Force Applies a gravitational force (in

cm/s) to Transient.PhysicsForce

X = 0.0, Y = 0.0, Z = -980.0

Drag Applies Drag directly to particle

velocity and/or rotational velocity,

irrespective of Mass.

0.25

Spring Force Applies a spring-like force on a

particle given certain parameters.

Accumulates to

Transient.PhysicsForce

Force Strength = 1.0, Spring

Tightness 5.0

Curl Noise Force

Strength

Scales the sampled curl noise force

vector

30000.0

Curl Noise Force

Noise Frequency

Modulates position to increase or

decrease the rate at which curl

noise is sampled.

20.0

77

Curl Noise Force

Pan Noise Field

Moves the sample position via

Emitter Age plus a random float

generated by the determinism flag

to create a more random feeling

sample

X = 0.2, Y = 0.5, Z = 1.0

Solve Forces and

Velocity

Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the

current Velocity. Outputs the

updated Particles. Velocity and

Particles.Position.

Active

JItter Position

Amount

Multiplies against the jitter offset to

create an offset vector which is

applied to particle position

50.0

Lightning Emitter

Property Description of Purpose Value

Life Cycle Mode Determines whether the life cycle

(Managing looping, age, and death)

of the Emitter is calculated by the

system that owns it, or by the

emitter itself.

Self

Inactive

Response

Determines what happens when the

emitter itself enters an inactive state

Complete (Let Particles

Finish then Kill Emitter)

Spawn Particles

from Other

Emitter

Spawn particles from another

emitter

Emitter Name = Source,

Spawn Rate = 100.0, Spawn

Rate per Particle Cap

1000.0

Lifetime Mode Lifetime of the particle Random Between 1.0 and

1.0

Colour Mode The colour of the particle Direct Set : R 0.0, G

0.407705, B 1.0, A 1.0

78

Ribbon Width

Mode

Determine the scale of the ribbon of

the particle

Direct Set 3.0

Sample Particles

from Other

Emitter

Sample the attributes of particles in

another emitter

enabled

Particle State Manages Particle Age / Lifetime Kill Particles When Lifetime

Has Elapsed (true)

Curl Noise Force

Strength

Scales the sampled curl noise force

vector

80.0

Curl Noise Force

Noise Frequency

Modulates position to increase or

decrease the rate at which curl

noise is sampled.

10.0

Curl Noise Force

Pan Noise Field

Moves the sample position via

Emitter Age plus a random float

generated by the determinism flag

to create a more random feeling

sample

X = 0.2, Y = 0.5, Z = 1.0

Curl Noise Force

Strength (2)

Scales the sampled curl noise force

vector

170.0

Curl Noise Force

Noise Frequency

(2)

Modulates position to increase or

decrease the rate at which curl

noise is sampled.

3.0

Curl Noise Force

Pan Noise Field

(2)

Moves the sample position via

Emitter Age plus a random float

generated by the determinism flag

to create a more random feeling

sample

X = 0.2, Y = 0.5, Z = 1.0

Solve Forces and

Velocity

Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the

current Velocity. Outputs the

Active

79

updated Particles. Velocity and

Particles.Position.

Scale Ribbon

Width

Scales the initial Ribbon Width by a

scale factor

Float from Curve

Jitter Position

Amount

Multiplies against the jitter offset to

create an offset vector which is

applied to particle position

3.0

Ribbon Renderer What the particles will render as Ribbon Renderer

80

Collision Enabled Niagara Particle Effect

Niagara Particle Effect -Tentacles

Overview of Effect

For this particle effect, I wanted something that the player has attached to the body. It

could be equipment, extra limbs, or anything. Then, I stumbled upon the idea of adding

tentacles into the back of the player. This particle effect increased the interactivity and

the aesthetics aspect of the game overall. Even though it doesn’t necessarily do

anything that can impact the overall course of gameplay such as damaging, extra

abilities, etc it still packs a punch in the aesthetic department.

The interaction that it has with the environment also looks very pleasing since it can

interact with walls that have a specific material in it. It can create a material change

that seemingly looks like a portal that the tentacles opened. This can create a more

immersive experience especially combined with the player’s wall run ability. This can

create a more vibrant aesthetic that adds to the already immersive wall running

capabilities of the players. The colours also represent which team the player is in and

this can create a sense of uniqueness to each of the players themselves.

It is also worth mentioning that the tentacle particles are spawned in fours that are

located in the back of the player character. This is done to add a dynamic sense and a

concept of tentacles that players are used to rather than just one single tentacle.

Effect Description

The particle itself has a colour between the players which are either blue or red. The

particle is made out of a ribbon renderer which fits the tentacle and when it collides.

The particle also changes shapes accordingly based on where the player is facing and

when the particle collides with objects. The particles are inspired by tentacles that are

portrayed through video games and media. Basically, the collision changes the

material of specific walls with specific materials into something else based on the

tentacles. The colours that are changed are from black to a mixture of green and cyan

that looks textured with the noise node.

81

Inspiration / Reference Images:

Source : https://disney.fandom.com/wiki/Ursula

One of the inspirations is from the movie Little mermaid. The movie Little Mermaid has a

character called Ursula who is a giant octopus humanoid creature. The tentacles that

are attached to her body are what inspired the making of the tentacles particles.

https://disney.fandom.com/wiki/Ursula

82

Source : https://www.pcgamesn.com/borderlands-3/amara-skill-tree

The character from Borderlands 3 named Amara has a power of extra limbs behind her

back. Even though the extra limbs are not tentacles, it still inspires me to make extra

limbs for my character.

In-Engine Screenshots:

https://www.pcgamesn.com/borderlands-3/amara-skill-tree

83

In this screenshot, it shows that the particle starts off as a white colour. Then it gradually

becomes the colour of the player’s team. It also spawned four of them with different

rotations.

As you can see in the screenshot, the colour becomes fully red and encapsulates the

whole particle.

In this picture, it can be seen that the particle is starting to get close to the wall. A small

colour change starts to appear when the particle is starting to touch the wall.

84

When the particles fully touch the wall, the wall material changes into a mix of cyan and

green with a textured noise node.

It can be seen that each one of the 4 particles contribute to the changing materials of

the wall, rather than just one. This proves that it didn’t use the player’s position but the

particles itself.

85

In this screenshot, it can also be seen that each player has a different colour with the

player that I was controlling having the colour red and the other player having the

colour blue.

86

Properties and Values

Custom Materials

M_Tentacles

This material is used for the tentacle particles. It's fairly simple by mixing the Fresnel

function and adding the particle colour. This enables it for the colour to be controlled

dynamically.

87

M_Radial

This Material is also very simple, it multiplies the RadialGradientExponential to the node

for the particle dots colour.

88

M_Reaction

89

90

91

Basically, this material is a bit more complicated. So it takes the generated particle’s location and

then it basically masks the wall based on the particle’s location. Then, the sphere mask gets

applied to the wall and changes the material on the wall partially.

Emitters

Tentacles Emitter

Property Description of Purpose Value

Life Cycle Mode Determines whether the life cycle

(Managing looping, age, and death)

of the Emitter is calculated by the

system that owns it, or by the

emitter itself.

Self

Inactive

Response

Determines what happens when the

emitter itself enters an inactive state

Complete (Let Particles

Finish then Kill Emitter)

Loop Behavior Determines what happens when the

Loop Duration is exceeded and what

values are calculated.

Infinite

92

Loop Duration Establishes the duration of the

emitter life cycle.

2.0

Spawn Rate Number of particles per second to

spawn

5.0

Lifetime Mode Lifetime of the particle Direct Set 1.0

Colour Mode The colour of the particle Direct Set :

user.TentacleColor

Ribbon Width

Mode

Determine the scale of the ribbon of

the particle

Direct Set 20.0

Velocity Mode The added velocity mode to the

particle

Linear

Velocity Speed The added speed of the velocity of

the particle

X 0.0, Y 0.0, Z 100.0

Particle State Manages Particle Age / Lifetime Kill Particles When Lifetime

Has Elapsed (true)

Acceleration

Force

Adds to Transient.PhysicsForce

which will translate into acceleration

within the solver.

X 200.0, Y 0.0, Z 0.0

Curl Noise Force

Strength

Scales the sampled curl noise force

vector

10.0

Curl Noise Force

Noise Frequency

Modulates position to increase or

decrease the rate at which curl

noise is sampled.

50.0

Curl Noise Force

Pan Noise Field

Moves the sample position via

Emitter Age plus a random float

generated by the determinism flag

to create a more random feeling

sample

X = 0.0, Y = 0.0, Z = 1.0

93

Collision Enabled Enable or disable the module’s

affect on the effect

enabled

Radius

Calculation Type

Each particle’s collision radius will

be calculated for you, per frame ,

using the methods laid out below.

Sprite

Method for

Calculating

Particles Radius

This enum changes the way that

each particle’s collision radius is

calculated.

Bounds

Particle Radius

Scale

This value scales the calculated

particle collision radius

1.0

Restitution This controls the particle’s bounce

coefficient. 1 will retain all of the

particle’s energy along the impact

normal vector and 0 will remove it.

0.6

Simple Friction If true, fewer parameters will be

used to control the friction

coefficient.

true

Friction The friction coefficient defines how

quickly a particle will slow down as it

slides across a surface

0.25

Solve Forces and

Velocity

Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the

current Velocity. Outputs the

updated Particles. Velocity and

Particles.Position.

Active

Generate

Location Event

Generates an event which contains

the position of the particle

generating the vent.

Type : Send Rate 2.0

94

Scale Ribbon

Width

Scales the initial Ribbon Width by a

scale factor

Float from Curve

Export Particles

Data to Blueprint

Export Particle Data to Blueprints or

C++

Callback Handler

Parameter : user.CallBack

Ribbon Renderer

Material

The material used to render the

particle/ Not that it must have the

Use with Niagara Sprites flag

checked.

M_Tentacles

Colorful_Dots

Property Description of Purpose Value

Life Cycle Mode Determines whether the life cycle

(Managing looping, age, and death)

of the Emitter is calculated by the

system that owns it, or by the

emitter itself.

Self

Inactive

Response

Determines what happens when the

emitter itself enters an inactive state

Complete (Let Particles

Finish then Kill Emitter)

Loop Behavior Determines what happens when the

Loop Duration is exceeded and what

values are calculated.

Infinite

Loop Duration Establishes the duration of the

emitter life cycle.

2.0

Spawn Rate Number of particles per second to

spawn

10.0

Lifetime Mode Lifetime of the particle Direct Set 1.0

Colour Mode The colour of the particle Random : R 1.0, G 0.24167, B

0.0, A 1.0

Hue Shift Range X 0.0 Y

95

100.0

Saturation Range 0.8 Y 1..0

Value Range X 0.8 Y 1.0

Alpha Scale Range X 0.8 Y

1.0

Ribbon Size Mode Determine the scale of the sprites of

the particle

Uniform 10.0

Velocity Mode The added velocity mode to the

particle

Linear

Velocity Speed The added speed of the velocity of

the particle

X 0.0, Y 0.0, Z 100.0

Particle State Manages Particle Age / Lifetime Kill Particles When Lifetime

Has Elapsed (true)

Acceleration

Force

Adds to Transient.PhysicsForce

which will translate into acceleration

within the solver.

X 200.0, Y 0.0, Z 0.0

Curl Noise Force

Strength

Scales the sampled curl noise force

vector

10.0

Curl Noise Force

Noise Frequency

Modulates position to increase or

decrease the rate at which curl

noise is sampled.

50.0

Curl Noise Force

Pan Noise Field

Moves the sample position via

Emitter Age plus a random float

generated by the determinism flag

to create a more random feeling

sample

X = 0.0, Y = 0.0, Z = 1.0

Collision Enabled Enable or disable the module’s

affect on the effect

enabled

96

Radius

Calculation Type

Each particle’s collision radius will

be calculated for you, per frame ,

using the methods laid out below.

Sprite

Method for

Calculating

Particles Radius

This enum changes the way that

each particle’s collision radius is

calculated.

Bounds

Particle Radius

Scale

This value scales the calculated

particle collision radius

1.0

Restitution This controls the particle’s bounce

coefficient. 1 will retain all of the

particle’s energy along the impact

normal vector and 0 will remove it.

0.6

Simple Friction If true, fewer parameters will be

used to control the friction

coefficient.

true

Friction The friction coefficient defines how

quickly a particle will slow down as it

slides across a surface

0.25

Solve Forces and

Velocity

Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the

current Velocity. Outputs the

updated Particles. Velocity and

Particles.Position.

Active

Generate

Location Event

Generates an event which contains

the position of the particle

generating the vent.

Type : Send Rate 2.0

Particle_Dots

Property Description of Purpose Value

97

Life Cycle Mode Determines whether the life cycle

(Managing looping, age, and death)

of the Emitter is calculated by the

system that owns it, or by the

emitter itself.

Self

Inactive

Response

Determines what happens when the

emitter itself enters an inactive state

Complete (Let Particles

Finish then Kill Emitter)

Loop Behavior Determines what happens when the

Loop Duration is exceeded and what

values are calculated.

Infinite

Loop Duration Establishes the duration of the

emitter life cycle.

2.0

Spawn Rate Number of particles per second to

spawn

10.0

Lifetime Mode Lifetime of the particle Direct Set 1.0

Colour Mode The colour of the particle Random : R 1.0, G 0.24167, B

0.0, A 1.0

Hue Shift Range X 0.0 Y 0.0

Saturation Range 0.8 Y 2.0

Value Range X 0.1 Y 1.0

Alpha Scale Range X 0.1 Y

1.0

Sprite Size Mode Determine the scale of the sprites of

the particle

Random Uniform Between

0.1 and 10.0

Velocity Mode The added velocity mode to the

particle

Linear

Velocity Speed The added speed of the velocity of

the particle

X 0.0, Y 0.0, Z 100.0

Particle State Manages Particle Age / Lifetime Kill Particles When Lifetime

Has Elapsed (true)

98

Scale Sprite Size Takes the initial sprite scale as set in

the spawn script, and scales it by a

scale factor

Uniform Curve -> Curve for

Floats

Gravity Force Applies a gravitational force (in

cm/s) to Transient.PhysicsForce

X 0.0, Y 0.0, Z 24.734362

Curl Noise Force

Strength

Scales the sampled curl noise force

vector

500.0

Curl Noise Force

Noise Frequency

Modulates position to increase or

decrease the rate at which curl

noise is sampled.

50.0

Curl Noise Force

Pan Noise Field

Moves the sample position via

Emitter Age plus a random float

generated by the determinism flag

to create a more random feeling

sample

X = 0.0, Y = 0.0, Z = 1.0

Drag Applies Drag directly to particle

velocity and/or rotational velocity,

irrespective of Mass.

1.0

Rotational Drag Reduces each particle’s rotational

velocity

1.0

Solve Forces and

Velocity

Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the

current Velocity. Outputs the

updated Particles. Velocity and

Particles.Position.

Active

99

void AA01_BlockoutShooterCharacter::MulticastReactWall_Implementation(const

TArray<FBasicParticleData>& Data)

{

for(int i = 0; i < Data.Num(); i++)

{

if(SpawnedTentaclesOne)

{

FLinearColor TentacleColor = GameState->GetTeamColor(GetPlayerState());

TransparentMatCollectionInst =

GetWorld()->GetParameterCollectionInstance(TransparentMatCollection);

if(TransparentMatCollectionInst)

Event Handle

Properties Source

Source of the emitter and event Emitter : Tentacles Event

LocationEvent

Receive Location

Event

Receives a Location event, such as

one generated by the “Generate

Location Event” Module. Optionally

writes that event payload directly to

the receiving particles’ attributes

Enabled

Shape Primitive The shape of what the particle will

spawn into

Sphere

Sphere Radius The radius of the sphere primitive 8.0

Sprite Renderer

Material

The material used to render the

particle/ Not that it must have the

Use with Niagara Sprites flag

checked.

M_Radial

C++ Interaction Description

Basically the way the C++ interaction works is very simple. It takes the user.CallBack

function to trigger the collision between the particles and the environments. It also

takes the user.TentacleColor function to change the colours based on the players. I also

made a material parameter collection to store the vector of the location that was

provided from the collision.

100

{

TransparentMatCollectionInst->SetVectorParameterValue("LocationOne",

SpawnedTentaclesOne->GetComponentLocation() + FVector(0,0,30.0));

SpawnedTentaclesOne->SetNiagaraVariableLinearColor(FString("TentacleColor"),Tentac

leColor);

TransparentMatCollectionInst->SetVectorParameterValue("LocationTwo",

SpawnedTentaclesTwo->GetComponentLocation() - FVector(0,0,30.0));

SpawnedTentaclesTwo->SetNiagaraVariableLinearColor(FString("TentacleColor"),Tentac

leColor);

TransparentMatCollectionInst->SetVectorParameterValue("LocationThree",

SpawnedTentaclesThree->GetComponentLocation() + FVector(0,0,30.0));

SpawnedTentaclesThree->SetNiagaraVariableLinearColor(FString("TentacleColor"),Tent

acleColor);

TransparentMatCollectionInst->SetVectorParameterValue("LocationFour",

SpawnedTentaclesFour->GetComponentLocation() - FVector(0,0,30.0));

SpawnedTentaclesFour->SetNiagaraVariableLinearColor(FString("TentacleColor"),Tenta

cleColor);

}

}

}

}

I also added offsets to when the particle sends the location of the material parameter

collection. I made it so that since each particles’ location is technically one location, I

made it so that it is distinct and it is offset so that it touches the edges of the particles

rather than the supposedly middle part of the particles. It also takes the colour of the

player’s team and then it sends the value when it collides. Since the particle technically

collides with the player’s mesh, it changes the colour straight away when the player

starts moving.

The impact of the C++ interaction is that although it is not really complicated, it

provides visual feedback when the player’s tentacles touch the wall and also provides

an identifier of the tentacles colour to the player’s team.

Custom Geometry Collection

Overview of Effect
The effect that I made for my custom geometry collection is very simple. It's basically a

basic wall but instead of a regular fracturing, it simulates bricks. The robustness of the

101

bricks and the brick shapes of the wall adds this effect of immersion when the player

shoots it. This creates a very pleasing and satisfying wall to break within the game.

In-Engine Screenshots

This screenshot shows how the wall looks and when the wall is about to get hit by

projectiles.

This screenshot shows when the wall gets hit by a projectile. As it can be seen, a very

clear brick outline is visible with bricks about to fall.

102

The screenshot shows the bricks all falling over after being hit by the projectile. It is very

clear that the shapes of the bricks are squares showcasing that they are in fact bricks.

Shader Effects

Shader Effect 1 - Stylized Water Shader

Overview of Effect

The effect is a very standard stylized water shader. It has a very stylized style with

adjustable colours. The colours that I used for it are the blue colour for the standard

water, the orange colour for the lava colour, and the black colour for the noir water. This

effect uses a noise node with a texture of the number 0 to simulate the stylized circles

effect of the water. The water shader’s dynamic capabilities are triggered through a

hitbox that is attached to the water component. When the player enters the hitbox, the

opacity changes to 0.5 and the wave direction of it also changes to a faster movement.

All of this affects the visual aspect of the plane itself but it does not change the mesh.

The intended impact on the gameplay is that it simulates water really well and can

increase the immersiveness of the gameplay. This can lead to a more enjoyable

experience when the player is playing the game. The other effect of the C++ interaction

of the shader is indication. With the opacity change and the speed of the wave

changing, it can be a very clear indicator that a player is inside the water. All of this

creates an aesthetically pleasing water shader that is implemented in the gameplay.

103

Effect Description

As mentioned before in the overview, the look of the shader is very stylized. It is not

similar to a typical water shader where it usually has low opacity and reacts like actual

water but it goes the other direction. The colour of it is adjustable with the default colour

being blue. The other colours that I put in the game are orange and black. The lines of

the stylized part of the water has a white colour with a 0 texture that is attached to a

noise node, making it random. There are also movements of the water shader. The

movements are the wave movements and the colour movements. The colour

movements are meant to simulate small wave movements while the wave movements

are there to simulate the wave movements.

Inspiration / Reference Images:

There are a lot of games that use the stylized water shader in their games. Some of the

games that I got the inspiration from are :

Source : https://danielilett.com/2020-04-05-tut5-3-urp-stylised-water/

The Legend of Zelda: The Wind Waker has a very stylized art direction in it. The water

shader inspired me to make my own with a similar feel in it. By similar feel, I meant the

style of the lines, and also the water colour itself.

https://danielilett.com/2020-04-05-tut5-3-urp-stylised-water/

104

Source : https://assetstore.unity.com/packages/vfx/shaders/stylized-water-shader-71207

I also got some inspiration from the unity asset store that showcases stylized water

shaders. These water shaders put me in the right direction on where I want my water

shader to head.

In-Engine Screenshots:

https://assetstore.unity.com/packages/vfx/shaders/stylized-water-shader-71207

105

This is the state of the water shader when it is not touched or entered. This has a blue

colour which is the default colour.

This screenshot showcases the water when a player is inside the water. In terms of

opacity, it can clearly be seen that it is way lower. The wave’s speed has also increased

though it is not clear to be seen in the screenshot.

106

This is one of the variations of the water shader which is the noir water. It has overall the

same values and behaviour with the normal water shader with the only difference

being black coloured.

The other variation of this has the colour orange to simulate a stylized lava.

Properties and Values

Property Description of Purpose Value

Main Color Used to control the main colour of

shader dynamically.

Float4 (0, 0.923, 1, 1)

Motif Colours Used to control the stylized part of the

colour of the shader dynamically

Float4 (1, 1, 1, 1)

Secondary Color Used to control the secondary colour of

the shader dynamically

Float4 (0, 0.0923, 1, 1)

Tertiary Color Used to control the tertiary colour of the

shader dynamically

Float4 (0, 0, 0.323, 1)

UVScale Used to control the UV scaling

dynamically

Scalar (1.0)

WaveDirection Used to control the direction of the wave

dynamically

Float4 (1, 1, 1, 0.001)

WaveOffset Used to control the offset of the wave

dynamically

Float4 (0, 0, 10, 1)

Opacity Used to control the opacity of the shader Scalar (1.0)

107

dynamically

Node Graph

These node graphs are for the colour movement of the shader. It uses 4 different

colours for each component. It uses the texture sample of 0 that is combined through a

Panner that uses a custom material function called MF_WaterPanning. With all the 4

different colours, it is combined using a material function called Bled_Screen that is put

into the Base Colour.

MF_WaterPanning

108

In this material function that was used called MF_WaterPanning, It uses the Noise node

to add variation into the texture sample. It also uses the blue texture sample as the

default to set up the panning speed with the Noise node that is multiplied with the input

UV scale that was set up. The TexCoord also plays a vital role in this function in creating

a proper text coordinate of the shader.

109

These nodes are used to set up the positioning of the water shader. I wanted to adjust

the movement and this plays a vital role in it. It starts with the Absolute World Position

that is combined with the dot product of the wave direction and then multiplied and

added with the wave offset that is multiplied with the Time node. This is then multiplied

into the VertexNormalWS node and then connected into the World Position Offset. This

causes the object to have an illusion of it moving around simulating a wave even

though it's just the shader doing the work.

Shader Effect 2 - Glitcher

Overview of Effect

The effect is called the Glitcher because it looks like it's glitching. This is very in theme

with the whole game with the Chaos Mace mechanic and the glitching theme. The

colour of this shader is Green with spikes that look like it's coming in and out creating a

glitch effect. The Glitcher is very in line with the Chaos Mace mechanic. It reacts

whenever the player attaches the Chaos Mace into the object and then it reacts by

making the movement of the glitching effect faster and changing the colour to blue

which is controlled by C++.

110

This effect is very simple but it is quite effective. It creates the impact of the Chaos

Mace mechanic and also makes the game more immersive overall. Since the theme of

the game is “A Glitch in the System”, the Glitcher is a perfect addition of a shader. The

shader also reacts differently to how the mesh is shaped. If the mesh is a cube, then the

shader will leave gaps in the object making the object extra glitchy. If the mesh is

shaped like a sphere, then the shader will have sharp edges that are going in and out of

the mesh. This can create a variety of objects that can adhere to the game mechanics

for future development.

Effect Description

The shader has a default colour of green. The Shader also has an effect that looks

glitchy with spikes going in and out if put into a sphere mesh. The shader also changes

dynamically based on what actions the player does to the mesh with the shader

attached mainly connected to the Chaos Mace mechanic. When the player attaches

the cable component into the object, it enables the player to trigger the Chaos Mace

mechanic. There are also indicators that can indicate this through the shader which is

the colour changing from green to blue and the speed of the spikes going in and out.

Inspiration / Reference Images:

One of the things I was inspired by is the ball ray that causes

static electricity. When I was growing up, I used to go to

science museums and these things were always interesting

to me. Therefore, I wanted to make a ball of lightning that

looks similar to this. Then after some development, it

inspired the Glitcher even if it looks vastly different.

Source : https://www.amazon.com.au/Katzco-Plasma-Ball-Electricity-Plug/dp/B089KTFXJB

This ball of blue energy is what inspired the shader as well. I

took the inspiration of the energy aspect of it making it look like

a blue ball of energy. The Glitcher has an energy ball feel into it

that was heavily inspired by this image.

Source : https://www.pinterest.com.au/pin/ball-blue-energy-rays-in-the-ball-of-blue-energy-aff-blue-ball-energy-ball-rays-ad--862439397373703391/

https://www.amazon.com.au/Katzco-Plasma-Ball-Electricity-Plug/dp/B089KTFXJB
https://www.pinterest.com.au/pin/ball-blue-energy-rays-in-the-ball-of-blue-energy-aff-blue-ball-energy-ball-rays-ad--862439397373703391/

111

In-Engine Screenshots:

This is the default view of the Glitcher mesh. It's hard to be shown as a screenshot, but

the Glitcher is moving constantly. It can also be seen that the default colour of it is

green.

112

In this picture, it can be seen that The Glitcher is attached to the cable component. This

is because the player has attached it and the player is now able to do the Chaos Mace

mechanic. It is hard to tell through the screenshot but the movement of the Glitcher is

way faster than before. As it can be seen, the colour changes from green to blue.

In this picture, it can be seen that the Glitcher is back to the default colour. This is

because the duration of the Chaos Mace mechanic has ended.

Properties and Values

Property Description of Purpose Value

Color Used to control the color of the shader

dynamically

Float4 (0, 1, 0.176, 1)

Velocity Used to control the velocity of the

shader’s movement dynamically

Scalar (0.1)

113

Node Graph

The way the node works on the surface is quite simple but there are custom material

functions that I made behind the scenes which are the MF_GlitchPosition and

MF_GlitchOpacity. Basically, it sets up the World Position of the object with the Velocity

being dynamic with the default value of 0.1. It is also combined with a Panner and the

Texture Sample T_Perlin_Noise to provide the noise of the object. The colour is also

fairly simple with a green colour that is multiplied with the opacity that goes into the

Emissive Color. For the World position, it is connected to the World Position Offset and

for the MF_GlitchOpacity, it is connected to the Opacity node.

114

MF_GlitchPosition

This material functions sets up the positioning of the object shader. It starts from the

Panner Component that is the Vector2 input component that broke out. Then it is

turned into a Float3 and put into the Noise node to provide the variance of the material.

Then it is subtracted with 0 for now but it can be changed later on when I want to make

a variety of the material. Then all that is multiplied with the position of the object that

was subtracted by the Absolute World Position of the object.

MF_GlitchOpacity

For the glitch opacity, it is quite simple. Basically it uses a SphereMask that is inverted.

Then, it is subtracted by 0.4 and 3.0 divided by it. Then, it is multiplied with the input

texture that was T_Perlin_Noise to provide the nice opacity that the shader has.

115

Post Processing Effects

Local Post Processing Effect - Underwater

Overview of Effect

The post processing effect that is present in the scene making it a local post processing

effect that I made is Underwater. This effect simulates the player being under the water.

Since the water shader is using a plane as its mesh, making a post processing under it

is very crucial. By adding the extra local post processing under the water shader, it can

simulate the player being under the water. When the player is under the water, the

player’s screen will turn to a shade of blue with small water bubbles going upwards.

This is commonly used in video games that have water in them.

Although there aren’t C++ interactions present, the effect is still highly effective in the

game setting. Without the post processing, the water shader effect can be ineffective

since it being a single plane can look quite obvious. This can make the game

experience more immersive and aesthetically pleasing. This can also make the whole

game more coherent in terms of art direction. This can also make the player have more

enjoyment when fighting underwater since the overall scene looks vastly different than

the regular camera on the surface. Even if the change is only on the camera, it still is

highly effective.

Effect Description

What the effect looks like is very simple. It has a very simple blue shade of colour that

overlays the camera. There are also simple water movements that go upwards to

simulate breathing underwater. This water movement is quite subtle and fast because I

don’t want it to obstruct the player’s view to the point it obstructs the gameplay of the

player. I want it to be visible but not too visible.

116

Inspiration / Reference Images:

Source : https://www.facebook.com/subnautica/photos/a.1158919240790871/1158920067457455/?type=3

Subnautica is one of the games that I could think of when it comes to underwater post

processing. I am not 100% sure on how they do it, I don't even know if it is actually a post

processing but all I know is that the colour of it is where I want my underwater post

processing to go.

https://www.facebook.com/subnautica/photos/a.1158919240790871/1158920067457455/?type=3

117

Source : https://www.youtube.com/watch?v=BxUL3-CzZos

Another game that I got the inspiration from is Bioshock 2. This game has Underwater

Sections That inspired my post processing effect. The blue mixed with green colour of

the post processing is perfect for reference of my post processing effect.

In-Engine Screenshots:

From the picture, it can be seen that the player is outside the water therefore, there are

no underwater post processing benign applied.

When the player enters the water, it can be seen that the post processing is in effect.

The whole scene becomes this blue colour shade and some areas are a bit distorted.

https://www.youtube.com/watch?v=BxUL3-CzZos

118

This is due to the fact that it is from the movement of the post processing effect that

describes the unpredictable and wavy nature of the water.

Properties and Values

Property Description of Purpose Value

Color Used to control colour of post processing

effect dynamically

Float4 (0, 0.927, 1, 1)

TextureUV Used to control the UV of the post

processing effect dynamically

Scalar (1.0)

PannerX Used to control the X part of the panner

of the post processing effect dynamically

Scalar (0.0)

PannerY Used to control the Y part of the paneer

of the post processing effect dynamically

Scalar (0.0)

Intensity Used to control the intensity of the

paneer of the post processing effect

dynamically

Scalar (1.0)

Power Used to control the power of the post

processing effect dynamically

Scalar (2.0)

SingleColor Used to blend and control the colours of

the scene and the post processing effect

Static Switch Parameter (True)

Node Graph

This is the whole post processing graph, every section will be explained in detail.

119

This section is for the paneer system for the water movement. The paneer system uses

a value from the scalar of TextureUV and the texture coordinate that is multiplied

together. It is then added to the coordinate of the paneer with the speed that is

adjustable. Then, it is added to the Texture Sample which uses T_Water_N normal

texture.

120

This section is for adjusting the intensity and the power of the post processing effect. It

can be seen that the Multiply and the Power Node are highly adjustable. That is

because those nodes are the one responsible for the intensity and power of the

processing effect. It is then added to the Post Processing Input.

121

The last part of the section is blending in the colour of the whole post processing and

the water movement effect with the static switch parameter node. This is then

connected to the Emissive Colour part of the main node because that's the only

available node when setting the main node into post processing.

Global Post Processing Effect - Outline

Overview of Effect

The global post processing is called Outline. The way this post processing works is that

it activates from the get go but the player can control whether to turn it on or off. The

post processing gives a green outline to each object’s vertices making things easier to

see and making everything looks very stylized.

Since the game itself is inspired by the matrix, I decided to go with the colour green for

the outline of the objects. Other than the outline, all of the other colours are black. This

gives the player the sense of immersion and feeling that they are transported into a

different world. The way the post processing activates and deactivates it is also unique.

It basically deactivates by spreading outwards from the player in the form of a circle.

The player can do this by pressing the E key. The player can also activate it back and

the way it activates is it does the exact same thing but in reverse. It comes to the player

in the form of a circle which can be done by pressing the E key again.

This creates a sense of control of when the player wants to see the different world. This

can also be used to identify objects that are hard to see without the post processing.

For example, if an object has a very harsh lighting and is really hard to see, it would be

best if the player can activate the post processing and see the object’s outline.

Effect Description

The effect looks very different from a typical filter on a camera. The effect makes

everything black except for the outlines of the object. The outline of the objects have the

colour green on it. The effect can also be controlled through the E key by deactivating

and activating it. The way it deactivates is it goes outwards from the player in the form

of a circle. The way it activates is the same way but in reverse, it comes to the player in

the form of a circle.

122

Inspiration / Reference Images:

Source : https://www.maniac.de/tests/borderlands-3-im-test-ps4-xbox-one/

One of the games that have an outline post processing is Borderlands. In this image

which comes from Borderlands 3, it has outlines in everything. This style is called Cel

Shading which is not what I did for my post processing effect. But I was inspired by the

outline aspect of the post processing effect.

Source : https://www.xbox.com/en-AU/games/store/superhot-windows-10/9NV17MJB26PG

https://www.maniac.de/tests/borderlands-3-im-test-ps4-xbox-one/
https://www.xbox.com/en-AU/games/store/superhot-windows-10/9NV17MJB26PG

123

The game that I was also inspired by is Superhot. Even though superhot doesn’t have a

post processing that I was inspired by, I was inspired more from the style of the game.

It's very simple but it is still charming. It inspired the simplicity aspect of my post

processing effect by making everything simple with the outline and nothing else.

In-Engine Screenshots:

By default the post processing is on. As it can be seen, everything is black except for

some objects and particles. All of the objects also have a green outline in them.

In this picture, it can be seen that the post processing effect is going away from the

player. This is the deactivation process of the post processing.

124

In this picture, the post processing is going away from the player. It's more wider than

the previous picture showing the dynamic movement of the deactivation of the post

processing.

In this picture, the post processing is coming back to the player. It's in the process of

coming back.

Properties and Values

Property Description of Purpose Value

Line Depth Used to control the depth of the outline

of the post processing effect dynamically

Scalar (0.0)

Power Used to control the power of the outline

post processing effect dynamically

Scalar (0.0)

Outline Color Used to control the Outline Color of the

post processing effect dynamically

Float4 (0, 0, 0, 0)

MPC_Outline Used to control the Position and the

Radius of the Post processing effect

Position (Vector), Radius

(Scalar)

125

dynamically through Material Parameter

Collection

Radius Used to control the radius of the post

processing effect’s sphere mask

dynamically

Scalar (0.0)

SceneLerpHandler A Timer that handles the timer

transitioning of the post processing

FTimerHandler

SceneLerp The value that changes the radius of the

scene dynamically

Min 0, Max 6000

bIsDoneLerping Checks if the scene is done changing or

not

false

Node Graph

126

This is the overall preview of the whole node. Even though it looks like there’s a lot going

on, it's simpler than it seems. Each section will be explained thoroughly.

To make sure only the outline is present, I need to subtract everything and leave the

outline.

127

From this node, it can be seen that I multiplied the scene depth with 1, 0. Then I added it

with the texture coordinate and the UV of the scene depth again. Then I mask it with the

RGB. From this, I subtracted it from the full scene.

This screenshot has the same function, the only difference is that it's subtracted by -1, 0.

128

This screenshot has the same function, the only difference is that it's subtracted by 0, 1.

This screenshot has the same function, the only difference is that it's subtracted by 0, -1

129

All of the things that were subtracted earlier are all added and multiplied with the line

depth and with the power and then clamped.

This part is for the masking part of the post processing effect. It gets the radius that is

adjustable and also the position of the player through the Material parameter

130

collection. It then uses a SphereMask that is also combined with the Absolute World

Position. Then it goes through an if statement to determine whether it's activated or not.

It also goes through a lerp with the adjustable outline colour and diffuse colour

function. All of that is then lerp with the mask being in the alpha and then multiplied

further.

The multiply is multiplied with the previous functionality of subtraction combined with

Outline Colour. The lerped part of the B is connected to the result of the masking and

the alpha is connected from the SphereMask.

Optimisation

Statistics Auditor Report

This is one of the test cases report which is the Statistics auditor Report. It checks how

many tris and polygons are present within the scene. This helps with identifying which

object has too many tris and needs to be optimised in terms of modelling. From the

screenshot, it can be seen that there are no objects with too many tris reaching

131

millions. The only concern for the game is the tris of the Shape_Sphere. The tris of the

Shape_Sphere, though not a lot, still racks up to 31,680 which is high compared to the

second highest which is the Cylinder which is 10,752. This can come from the amount of

actors that are present within the scene as it can be seen with Shape_Sphere having

33 actors. Even if this is not a problem yet, this can still cause potential problems if it is

replaced with another mesh.

There are a couple of solutions to solve the potential problem that may occur. One of

the solutions is to lessen the number of actors that are present within the scene with

the mesh that was referred to. We can use Shape_Sphere for example. By reducing the

number of the actors from 33 into around 20. This however, can affect the gameplay

and the use of the actors.

It can lessen the tris by a huge amount which will lessen the workload of the computer.

Another potential solution that can be executed is also to lessen the tris of the model.

By making the sphere a lower poly sphere, it can lower the tris immensely and can

support the game’s performance more. Though it may reduce the appeal of the mesh

itself.

In conclusion, based on the report, currently the game is in good shape in regards to

tris, however it is still worth noting that there are still some potential problems present.

These problems can be potentially solved by lowering the tris of the model or deleting

the actors themselves.

GPU Profiler Report

This is one of the test cases from the Unreal Engine reports. It contains useful

information about the workload of the GPU based on the game’s runtime. As it can be

seen, there are 2 things that can be optimised more which are the shadows and the

post processing. These 2 things are very GPU intensive since they use HLSL that utilises

the GPU.

132

The potential causes of these things are because of the post processing that is

implemented within the game. One of which is the dynamic post processing which can

use a lot of GPU power. The shadows are also affected since the shadows of the object

will render differently based on the post processing that is applied. Although it is hardly

noticeable if the player uses a high level graphics card. This can cause some issues for

computers with a low level graphics card.

There are a couple of potential fixes that can be done to this. The most straightforward

one is to lessen the post processing effect for the whole game. The global post

processing that is currently implemented has a lot of work behind the scenes with

Unreal’s material nodes. By lessening the effect overall, it can cause some aesthetic

issues making it look less appealing but it can optimise the game better. The other

potential solution is to disable the post processing when the post processing is

deactivated. The way it works right now is that the post processing is not fully disabled

but rather pushed back outside of the map. This means the post processing is still

active in the background even if the player is not seeing it. Again, this can cause issues

with how the game looks since it can reveal the skyboxes that are clashing with the

game’s art direction but it could heavily optimise the game in the right way.

Overall, the solution to this problem just comes by adjusting the post processing. The

shadows then will solve itself once the post processing problem is solved which can

lead to better GPU performance.

133

Unreal Insights Report

This is the Unreal Insights report. It shows where the frames are bad when the game is

running. As it can be seen above, the game is running at an inconsistent pace. The

game spikes at the start which is quite normal but then the game spikes a lot in the

middle and then spikes at the end.

There are a few things that can cause this. It can be because the player was emitting

particle systems which can be quite taxing to the computer. Another thing that can

cause it is chaos destruction and post processing. The chaos destruction is heavy in

terms of visuals and the post processing is also taxing. Another thing that might be an

issue is the wall running mechanic. When the player wall run, it checks through the

overlap and the ray trace functions which can be quite intensive behind the scenes.

From these potential problems there are a couple of potential solutions for each

problem. For the particle system, less particle systems can be implemented. By less, I

mean the spawn rate and the amount of particle systems that spawns in the world. This

can make the game’s performance better though it can sacrifice the particle’s visual

aesthetic. Another potential solution is adding an LOD system to the chaos destruction

of when it is out of the player’s view. This can give the game more performance without

sacrificing anything since it is not gonna be visible when it is out of view. It can also be

destroyed when it is out of view. The last potential solution is adjusting the wall running

mechanic and changing the way it is coded. This solution is considered to be difficult

134

since changing something that’s already working can lead to worse results of it not

working. While time consuming, this can be a great solution to solving performance

issues for things that are behind the scenes.

Timing Sections Report

Timings Section 1

In one of the frames that spiked, this result has been retrieved. It can be seen that the

ShaderCompiler is using 14.9 milliseconds of data which is quite a lot. This can be quite

taxing to the computer which can cause performance issues.

The potential cause of this is the shaders that are present in the world. The shaders that

are present are the Glitcher shaders and the water shader. The water shader shouldn’t

be a problem since there are only 3 present but the Glitcher could cause some issues.

This is due to the fact that the Glitch Objects are scattered throughout the map and

everywhere.

There are a couple of potential solutions for the issue with the shaders. One of the

potential solutions is lessening the movement and the dynamic change of the shader.

By changing the values and the nodes in the shaders. Another change that is also

possible is lessening the actors with the custom shaders. This should be a last resort

option since lessening the actor can impact the gameplay of the game itself. The last

potential solution that could work is also making the shader disappear when the

camera is not rendering them. This could solve the problem of impacting the gameplay

while also solving the problem of the extensive shader use in the game.

In conclusion, having a lot of shaders in the scene is not a good idea since it can cause

extensive strain into the game. The potential cause of the shader problem from the

report is most likely the Glitcher shader. This can potentially be fixed by lessening the

number of actors with the shader, lessening the movement and complexity of the

135

shader, and making the shader disappear when it is not in the player’s sight. All of these

are potential solutions but there is no guarantee that any of them will work perfectly.

Timings Section 2

In this screenshot, there are a couple of things that are present but I am going to focus

on the NiagaraSystem. The Niagara System is triggered 4 times with more than 100

nanoseconds of use which is quite significant.

The potential problem for this is the particle effect since particle systems are made with

the Niagara System. The particle effects in discussion are the tentacle particles. This is

due to the fact that the tentacle particles are 4 separate particle systems that are

attached to the player. By knowing that it is 4 particle systems that function almost

identically, I can pinpoint that, that is the major cause of what causes the usage of the

system. It is also worth mentioning that everytime it collides, it triggers a set of code

and it collides almost every time with the player itself which can be a huge problem of

optimization. This is because of how the code works when the tentacles are interacting

with the walls it uses a primitive collision that goes between 2 modes : collide or don’t

collide.

There are several potential fixes that can be done to the particle system so that it is

more optimized. One of the potential fixes is just to delete the particle system. The

tentacles are not essential to the gameplay system so deleting it wouldn’t affect the

gameplay loop. The downside of this is that it sacrifices the aesthetics of the game.

Another potential fix is lowering the spawn rate of the tentacles. By lowering the spawn

rate, the collision will be less as well. This can make the game more optimized but this

will sacrifice the tentacle’s visuals. The last potential fix that can be done is adding a

custom collision to the tentacles. Adding this can be quite trivial since this means

adjusting the code of the NiagaraSystem itself to detect collision more efficiently which

may need extensive knowledge of the game engine itself. Though it is time consuming,

136

these potential fixes are worth it to increase the game’s performance and upgrade the

immersivity for the players that are playing the game.

